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Cotorsion theories in exact categories

Let A be an exact category (in Quillen’s sense).

Given a class of
objects F ⊂ A, its right orthogonal complement F⊥ is the class of
objects

F⊥ = {X ∈ A : Ext1
A(F ,X ) = 0 ∀F ∈ F}.

Given a class of objects C ⊂ A, its left orthogonal complement ⊥C
is the class of objects

⊥C = {X ∈ A : Ext1
C(X ,C ) = 0 ∀C ∈ C}.

A cotorsion theory in an exact category A is a pair of classes of
objects F , C ⊂ A such that F⊥ = C and ⊥C = F .

We will call the class of objects F ⊂ A the flat class and the class
C ⊂ A the cotorsion class.
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Cotorsion theories in exact categories

A cotorsion theory (F , C) in an exact category A is called complete

if for every object X ∈ A there exist two short exact sequences

0 −→ X −→ C −→ F ′ −→ 0

and
0 −→ C ′ −→ F −→ X −→ 0

in the category A with F , F ′ ∈ F and C , C ′ ∈ C.

Theorem (Eklof–Trlifaj 2001)

Let A be an associative ring and A = A-mod be the abelian
category of left A-modules. Let S ⊂ A be a set of objects. Then
the classes C = S⊥ and F = ⊥C form a complete cotorsion theory
in the category A.
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Cotorsion theories in exact categories

A complete cotorsion theory (F , C) in an exact category A is called
hereditary

if any of the following equivalent conditions holds:

the class F is closed under kernels of admissible
epimorphisms, i.e. for any short exact sequence

0 −→ F −→ G −→ H −→ 0

in A with G , H ∈ F the object F also belongs to F ; or

the class C is closed under cokernels of admissible
monomorphisms, i.e. for any short exact sequence

0 −→ E −→ D −→ C −→ 0

in A with E , D ∈ C the object C also belongs to C; or

one has Ext2
A(F ,C ) = 0 for all F ∈ F and C ∈ C; or

one has ExtnA(F ,C ) = 0 for all F ∈ F and C ∈ C and
all n > 1.
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the class C is closed under cokernels of admissible
monomorphisms, i.e. for any short exact sequence

0 −→ E −→ D −→ C −→ 0

in A with E , D ∈ C the object C also belongs to C; or

one has Ext2
A(F ,C ) = 0

for all F ∈ F and C ∈ C; or

one has ExtnA(F ,C ) = 0 for all F ∈ F and C ∈ C and
all n > 1.
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Cotorsion theories in exact categories

In a hereditary complete cotorsion theory (F , C),

the class F can
be characterized as consisting of all the objects F ∈ A for which
the functor HomA(F ,−) takes short exact sequences

0 −→ E −→ D −→ C −→ 0

of objects E , D, C ∈ C to short exact sequences of abelian groups
0→ HomA(F ,E )→ HomA(F ,D)→ HomA(F ,C )→ 0.

The class C can be characterized as consisting of all the objects
C ∈ A for which the functor HomA(−,C ) takes short exact
sequences

0 −→ F −→ G −→ H −→ 0

of objects F , G , H ∈ F to short exact sequences of abelian groups
0→ HomA(H,C )→ HomA(G ,C )→ HomA(F ,C )→ 0.
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Flat and very flat cotorsion theories

Let A be an associative ring. A left A-module C is called cotorsion
if one has Ext1

A(F ,C ) = 0 for any flat left A-module F . Denote
the class of flat left A-modules by FA and the class of cotorsion
left A-modules by CA.

Let R be a commutative ring. An R-module C is called
contraadjusted if one has Ext1

R(R[s−1],C ) = 0 for all elements
s ∈ R. An R-module F is called very flat if one has
Ext1

R(F ,C ) = 0 for any contraadjusted R-module C . Denote
the class of very flat R-modules by VFR and the class of
contraadjusted R-modules by CAR .

Corollary (of the Eklof–Trlifaj Theorem)

(a) The classes FA and CA form a hereditary complete cotorsion
theory in the abelian category A-mod.
(b) The classes VFR and CAR form a hereditary complete
cotorsion theory in the abelian category R-mod.
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In this talk, we are only interested in hereditary complete cotorsion
theories.

The flat and very flat cotorsion theories play a key role in
the theory of contraherent cosheaves over schemes and stacks.
Development of the theory of contraherent cosheaves of
contramodules over formal schemes and ind-schemes requires
a construction of the flat and/or very flat (hereditary complete)
cotorsion theories in the abelian categories of contramodules.

The proof of the Eklof–Trlifaj theorem is based on the facts that
the category of modules is a Grothendieck abelian category, and
also that it has enough projective objects. In the categories of
contramodules there are also enough projective objects, but
the infinite direct sums are not exact. Thus the argument of Eklof
and Trlifaj does not seem to be applicable.
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The categories of contramodules are locally presentable,

and
λ-filtered inductive limits in them are exact for big enough
cardinals λ, but this does not seem to help, as non-λ-filtered
filtered inductive limits are hard to control.

I will explain how to construct the flat and very flat hereditary
complete cotorsion theories in the abelian categories of
contramodules

using the fact of hereditary completeness of such theories in
the category of modules as a black box,

or otherwise, using old-style explicit constructions of
flat/cotorsion resolutions of modules.
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Contramodules

Contramodules are module-like objects endowed with infinite
summation (or, occasionally, integration) operations, understood
algebraically as infinitary (linear) operations subject to natural
axioms. Contramodules carry no underlying topologies on them,
but feel like being in some sense “complete”. For about every class
of “discrete” or “torsion” modules, there is an much less familiar,
but no less interesting accompanying class of contramodules.

“Discrete” or “torsion” module categories typically have exact
functors of filtered inductive limits and enough injective objects,
but nonexact functors of infinite product and no projectives.

Contramodule categories have exact functors of infinite product,
and typically enough projective objects, but nonexact functors of
infinite direct sum and no injectives.

The historical obscurity/neglect of contramodules seems to be
the reason why many people believe that projectives are much less
common than injectives in “naturally appearing” abelian categories.
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Contramodules over a Commutative Ring with an Ideal

An abelian group P with an additive operator s : P −→ P is said
to be s-contraadjusted if for any sequence p0, p1, p2, . . . ∈ P
the infinite system of nonhomogeneous linear equations

qn = sqn+1 + pn for all n > 0

has a solution q0, q1, q2, . . . ∈ P.

An abelian group P with an additive operator s is said to be
an s-contramodule if for any p0, p1, p2, . . . the system of
equations qn = sqn+1 + pn has a unique solution in P.

The infinite summation operation with s-power coefficients in
an s-contramodule P is defined by the rule

∞∑
n=0

snpn = q0.
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Contramodules over a commutative ring with an ideal

Conversely, given an additive, associative, and unital s-power
infinite summation operation

(pn)∞n=0 7−→
∑∞

n=0
snpn

in an abelian group P, one can uniquely solve the system of
equations qn = sqn+1 + pn in P by setting

qn =
∑∞

i=0
s ipn+i .

A module P over a commutative ring R with an element s ∈ R is
s-contraadjusted (i.e., contraadjusted with respect to the operator
of multiplication with s) if and only if Ext1

R(R[s−1],P) = 0.

An R-module P is an s-contramodule if and only if
ExtiR(R[s−1],P) = 0 for i = 0 and 1. (Notice that the R-module
R[s−1] has projective dimension at most 1.)
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Contramodules over a commutative ring with an ideal

Any quotient R-module of an s-contraadjusted R-module is
s-contraadjusted.

Any extenstion of two s-contraadjusted
R-modules is s-contraadjusted. An infinite product of
s-contraadjusted R-modules is s-contraadjusted.

The kernel and cokernel of any morphism of s-contramodule
R-modules are s-contramodule R-modules. Any extension of two
s-contramodule R-modules is an s-contramodule R-module.

Let I ⊂ R be an ideal. An R-module P is called an I -contramodule
if it is an s-contramodule for every s ∈ I . It suffices to impose this
condition for a set of generators sj of the ideal I .

The category of I -contramodule R-modules R-modI -ctra is abelian
with exact functors of infinite product. The embedding functor
R-modI -ctra −→ R-mod is exact and preserves infinite products.
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Flat and very flat cotorsion theories for I -contramodules

Let R be a Noetherian commutative ring and I ⊂ R be an ideal.

Denote by CR,I ⊂ R-modI -ctra the class of all I -contramodule
R-modules that are at the same time cotorsion R-modules. Denote
by FR,I ⊂ R-modI -ctra the class of all I -contramodule R-modules
that are at the same time flat R-modules.

Denote by CAR,I ⊂ R-modI -ctra the class of all I -contramodule
R-modules that are at the same time contraadjusted R-modules.

An I -contramodule R-module P is said to be very flat if any of
the following equivalent conditions holds:

P is a flat R-module and P/IP is a very flat R/I -module; or

the R/I n-module P/I nP is very flat for every n > 1.

Denote the class of all very flat I -contramodule R-modules by
VFR,I ⊂ R-modI -ctra.
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Flat and Very Flat Cotorsion Theories for I -Contramodules

Theorem

Let R be a Noetherian commutative ring and I ⊂ R be an ideal.
Then

(a) the classes FR,I and CR,I form a hereditary complete cotorsion
theory in the abelian category R-modI -ctra;
(b) the classes VFR,I and CAR,I form a hereditary complete
cotorsion theory in the abelian category R-modI -ctra.

[L.P., “Contraherent cosheaves”, arXiv:1209.2995 [math.CT],
Sections C.2–C.3]
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Sketch of proof of part (a).

Let I = (sj) ⊂ R. Any R-module L that is sj -contraadjusted for
every j has a unique maximal quotient R-module that is
an I -contramodule. Denote it by L/L(I ).

Let P be an I -contramodule R-module, and let
0 −→ P −→ C −→ F ′ −→ 0 be a short exact sequence of
R-modules, where C is a cotorsion R-module and F ′ is a flat
R-module. Then 0 −→ P −→ C/C (I ) −→ F ′/F ′(I ) −→ 0 is
a short exact sequence of I -contramodule R-modules, while
C/C (I ) is a cotorsion R-module and F ′/F ′(I ) is a flat R-module.

Let 0 −→ C ′ −→ F −→ P −→ 0 be a short exact sequence of
R-modules, where C ′ is a cotorsion R-module and F ′ is a flat
R-module. Then 0 −→ C ′/C ′(I ) −→ F/F (I ) −→ P −→ 0 is
a short exact sequence of I -contramodule R-modules, while
C ′/C ′(I ) is a cotorsion R-module and F/F (I ) is a flat
R-module.
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Contramodules over topological rings

Fancy definition of (conventional) modules over a discrete ring R:

to any set X one assigns the set R[X ] of all formal linear
combinations of elements of X with coefficients in R;

the functor X 7−→ R[X ] is a monad on the category of sets

with the “parentheses opening” map φX : R[R[X ]] −→ R[X ]

and the “point measure” map εX : X −→ R[X ];

define left R-modules as algebras/modules over this monad
on Sets, that is

a left R-module M is a set

endowed with a map of sets m : R[M] −→ M

satisfying the associativity equation m ◦ R[m] = m ◦ φM

R[R[M]]⇒ R[M] −→ M

and the unity equation m ◦ εX = idM

M −→ R[M] −→ M.
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Contramodules over topological rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

For any set X , denote by R[[X ]] the set of all infinite formal linear
combinations

∑
x∈X rxx of elements of X with the coefficients

forming a family converging to zero in the topology of R, i.e., for
any neiborhood of zero U ⊂ R the set {x | rx /∈ U} must be finite.

It follows from the conditions on the topology of R that there is
a well-defined “parentheses opening” map

φX : R[[R[[X ]]]] −−→ R[[X ]]

performing infinite summations in the conventional sense of
the topology of R to compute the coefficients. There is also
the obvious “point measure” map εX : X −→ R[[X ]]. The natural
transformations φ and ε define the structure of a monad on
the functor X 7−→ R[[X ]] : Sets −→ Sets.
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Contramodules over Topological Rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

A left contramodule over the topological ring R is
an algebra/module over the monad X 7−→ R[[X ]] on Sets, that is

a set P

endowed with a contraaction map π : R[[P]] −→ P

satisfying the contraassociativity equation π ◦R[[π]] = π ◦φP

R[[R[[P]]]] ⇒ R[[P]] −→ P

and the unity equation π ◦ εP = idP

P −→ R[P] −→ P.

The composition of the contraaction map π : R[[P]] −→ P with
the obvious embedding R[P] −→ R[[P]] defines the underlying
left R-module structure on every left R-contramodule.
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Contramodules over topological rings

Let R be a (separated and complete) topological ring where open
right ideals form a base of neighborhoods of zero.

Then the category of left R-contramodules is abelian with exact
functors of infinite product and enough projectives (which are
the direct summands of the free R-contramodules R[[X ]]).
The forgetful functor R-contra −→ R-mod is exact and preserves
infinite products.

Let R be a Noetherian commutative ring with an ideal I ⊂ R,
and let R = RÎ be the I -adic completion of R (endowed with
the I -adic topology). Then the forgetful functor
R-contra −→ R-mod is fully faithful and its image consists of
all the I -contramodule R-modules.

In particular, Zp-contramodules = weakly p-complete
(Ext-p-complete) abelian groups [Bousfield–Kan ’72, Jannsen ’88].
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and let R = RÎ be the I -adic completion of R (endowed with
the I -adic topology). Then the forgetful functor
R-contra −→ R-mod is fully faithful and its image consists of
all the I -contramodule R-modules.

In particular, Zp-contramodules = weakly p-complete
(Ext-p-complete) abelian groups [Bousfield–Kan ’72, Jannsen ’88].

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and very flat cotorsion theories for R-contramodules

Let R0 ←− R1 ←− R2 ←− · · · be a projective system of
commutative rings and surjective homomorphisms between them.

Consider the projective limit R = lim←−n
Rn, and endow it with

the projective limit topology.

For any R-contramodule P, denote by Pn the maximal quotient
R-contramodule of P whose R-contramodule structure comes
from an Rn-module structure. An R-contramodule F is called flat
if

the Rn-module Fn is flat for every n > 0,

and the natural map F −→ lim←−n
Fn is an isomorphism.

The class FR of flat R-contramodules is closed under extensions,
infinite products, and the passage to the kernels of surjective
morphisms in R-contra. Projective R-contramodules are flat.
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Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1

are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated.

Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R

such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules

that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules.

(We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat

if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0.

Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion

if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q)

takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups.

Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Assume that the ideals ker(Rn+1 → Rn) ⊂ Rn+1 are finitely
generated. Fix a commutative ring R endowed with a ring
homomorphism R −→ R such that the compositions
R −→ R −→ Rn are surjective maps.

Denote by CAR ⊂ R-contra the class of all R-contramodules that
are contraadjusted as R-modules. (We will see that this class
does not in fact depend on the choice of a ring R.)

A flat R-contramodule F is called very flat if the Rn-module Fn is
very flat for every n > 0. Denote the class of all very flat
R-contramodules by VFR ⊂ R-contra.

An R-contramodule Q is said to be cotorsion if the functor of
R-contramodule homomorphisms HomR(−,Q) takes short exact
sequences of flat R-contramodules to short exact sequences of
abelian groups. Denote the class of all cotorsion R-contramodules
by CR ⊂ R-contra.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Flat and Very Flat Cotorsion Theories for R-Contramodules

Theorem

(a) For any projective system of commutative rings and surjective
homomorphisms R0 ←− R1 ←− R2 ←− · · ·

with finitely generated
kernel ideals ker(Rn+1 → Rn), the classes VFR and CAR form
a hereditary complete cotorsion theory in the abelian category
R-contra.

(b) When the rings Rn are Noetherian and their Krull dimensions
are uniformly bounded by a constant, the classes FR and CR form
a hereditary complete cotorsion theory in the abelian category
R-contra.

[“Contraherent cosheaves”, Sections D.3–D.4]
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Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule.

Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism

(the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).

Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module

and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K

with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules

0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0.

Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn

, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences

0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F .

Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,

the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted,

and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Brief sketch of proof of part (a).

Let P be an R-contramodule. Suppose that the map
P −→ lim←−n

Pn is an isomorphism (the general case will follow).
Consider P as an R-module and embed in into a contraadjusted
R-module K with a very flat quotient R-module F = K/P.

Then there are short exact sequences of Rn-modules
0 −→ Rn ⊗R P −→ Rn ⊗R K −→ Rn ⊗R F −→ 0. Furthermore,
there are surjective homomorphisms of Rn-modules
Rn ⊗R P −→ Pn, and the induced short exact sequences
0 −→ Pn −→ Qn −→ Rn ⊗R F −→ 0.

Put Q = lim←−n
Qn and F = lim←−n

Rn ⊗R F . Then there is a short
exact sequence of R-contramodules 0 −→ P −→ Q −→ F −→ 0,
the R-module Q is contraadjusted, and the R-contramodule F is
very flat.

Leonid Positselski Cotorsion Theories in Contramodule Categories



Very Flat Cotorsion Theory for R-Contramodules

Sketch of proof of part (a) — final comment.

One still has to prove that ExtR,1(F,Q) = 0 when F is a very flat
R-contramodule and Q is an R-contraadjusted
R-contramodule.
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Flat Cotorsion Theory for R-Contramodules

Sketch of proof of part (b).

This argument is not based on using the Eklof–Trlifaj theorem as
a black box, but rather on an explicit construction of cotorsion/flat
resolutions that people used in pre-ET times [Xu ’96].

Let T be a Noetherian commutative ring and H be a flat
T -module. For any prime ideal q ⊂ T , consider the localization
Hq = Tq ⊗T H of the T -module H at q, and take its q-adic

completion Ĥq = lim←−n
Hq/q

nHq.

Set FCT (H) =
∏

q∈SpecT Ĥq. Then the T -module FCT (H) is flat
cotorsion, and the natural map H −→ FCT (H) is injective with
a flat cokernel.

Given a surjective ring homomorphism T −→ S , there is a natural
isomorphism S ⊗T FCT (H) ' FCS(S ⊗T H).
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This argument is not based on using the Eklof–Trlifaj theorem as
a black box, but rather on an explicit construction of cotorsion/flat
resolutions that people used in pre-ET times [Xu ’96].

Let T be a Noetherian commutative ring and H be a flat
T -module. For any prime ideal q ⊂ T , consider the localization
Hq = Tq ⊗T H of the T -module H at q, and take its q-adic

completion Ĥq = lim←−n
Hq/q

nHq.

Set FCT (H) =
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q∈SpecT Ĥq. Then the T -module FCT (H) is flat
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Flat Cotorsion Theory for R-Contramodules

Sketch of proof of part (b) — cont’d.

Let G be a flat R-contramodule. So G is the projective limit of
its quotient Rn-modules Gn. Set C = lim←−n

FCRn(Gn) and

F = lim←−n
(FCRn(Gn)/Gn).

Then there is a short exact sequence of R-contramodules
0 −→ G −→ C −→ F −→ 0, the R-contramodule C is flat
cotorsion, and the R-contramodule F is flat.

When the Krull dimensions of the rings Rn are uniformly bounded,
any flat R-contramodule has finite projective dimension, and any
R-contramodule has finite cotorsion dimension.

This allows to deduce the existence of cotorsion/flat resolutions
for arbitrary R-contramodules from their existence for flat
R-contramodules.
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