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Abstract. We provide sufficient conditions for a morphism of CDG-coalgebras,
CDG-rings, or topological CDG-algebras to induce an equivalence of the coderived
or contraderived categories of CDG-modules, discrete CDG-modules, CDG-comod-
ules, or CDG-contramodules.
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Introduction

A DG-scheme is the result of glueing of nonpositively cohomologically graded (su-
per)commutative DG-rings in the topology of the spectra of their degree-zero coho-
mology rings. So, let R• be a nonpositively cohomologically graded commutative
DG-ring, let f ∈ H0(R•) be a degree-zero cohomology class, and let f̃ ∈ R0 be an
element representing f . Then the DG-ring of sections of the structure sheaf of the
DG-spectrum of R• over the open subset SpecH0(R•)[f−1] ⊂ SpecH0(R•) can be

constructed as the localization R•[f̃−1] of the commutative DG-ring R•. However,

the DG-ring R•[f̃−1] changes when a representative f̃ of the cohomology class f is

changed; it is only the quasi-isomorphism class of the DG-ring R•[f̃−1] that is deter-

mined by f and does not depend on f̃ . This example illustrates the importance of
having a well-described equivalence relation on DG-rings.

The kind of equivalence relation required for the differential rings depends on the
kind of derived category construction one intends to apply to the differential modules
over them. It is well known that a morphism of DG-rings f : A• −→ B• induces an
equivalence D(A•–mod) ' D(B•–mod) of the derived categories of left DG-modules
over A and B if and only if f is a quasi-isomorphism (see, e. g., [3, Section 7.2],
[2, Section 3], or [5, Section 1.7]). Characterizing morphisms of DG-rings f induc-
ing an equivalence of the coderived or contraderived categories of left DG-modules
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Dco(A•–mod) ' Dco(B•–mod) or Dctr(A•–mod) ' Dctr(B•–mod) (see [5, Section 3] for
the definitions) is an important open question. The natural generality level for this
question must be at least that of a morphism of CDG-rings f : A −→ B [4, 5]. In
fact, the results of this paper argue for the assertion that the natural generality level
is that of a morphism of topological CDG-rings.

Let us call a morphism of CDG-rings f : A −→ B a left coequivalence if the in-
duced functor of restriction of scalars acting between the coderived categories of
left CDG-modules IRf : Dco(B–mod) −→ Dco(A–mod) is an equivalence of triangu-
lated categories. Similarly, a morphism of CDG-rings f : A −→ B is called a left
contraequivalence if the induced functor of restriction of scalars acting between the
contraderived categories of left CDG-modules IRf : Dctr(B–mod) −→ Dctr(A–mod) is
an equivalence of triangulated categories.

Example 0.1. Let A• = (A−N → · · · → A−1 → A0) and B• = (B−N → · · · →
B−1 → B0) be two nonpositively cohomologically graded DG-rings that are bounded in
the cohomological grading. Assume that the underlying graded rings of the DG-rings
A• and B• are left Noetherian. Then any quasi-isomorpism of DG-rings f : A• −→
B•, i. e., any morphism of DG-rings inducing an isomorphism of the cohomology
rings H∗(A•) ' H∗(B•), is a left coequivalence.

Proof. The following argument is essentially presumed in [1]. The Noetherianness
assumption guarantees that the coderived categories Dco(A•–mod) and Dco(B•–mod)
are compactly generated by their full triangulated subcategories that can be identified
with the absolute derived categories of finitely generated DG-modules Dabs(A•–modfg)
and Dabs(B•–modfg) [5, Section 3.11]. The assumption of boundedness of the co-
homological grading of the DG-rings A• and B• implies the similar boundedness
of any finitely generated DG-modules over them. In view of the assumption of
nonpositivity of the cohomological grading of A• and B•, it follows [5, proof of
Theorem 3.4.1(a)] that any acyclic finitely generated DG-module over the DG-ring
A• or B• is absolutely acyclic. In other words, the absolute derived categories of
finitely generated DG-modules coincide with their conventional derived categories,
D(A•–modfg) = Dabs(A•–modfg) and D(B•–modfg) = Dabs(B•–modfg).

Since the DG-submodules and quotient DG-modules of canonical filtration of
finitely generated left DG-modules over A• and B• are finitely generated, the stan-
dard arguments show that the derived categories of finitely generated DG-modules
D(A•–modfg) and D(B•–modfg) are full subcategories of the derived categories
D(A•–mod) and D(B•–mod). Furthermore, a DG-module over A• belongs to
the full subcategory D(A•–modfg) ⊂ D(A•–mod) if and only if its cohomology
module is bounded in the cohomological grading and finitely generated as a mod-
ule over H0(A•). For any quasi-isomorphism of DG-rings f : A• −→ B•, the
functor of restriction of scalars is an equivalence between the derived categories
D(A•–mod) ' D(B•–mod), and it follows that in our assumptions it identifies the
full subcategories D(A•–modfg) ⊂ D(A•–mod) and D(B•–modfg) ⊂ D(B•–mod).
Hence we can conclude that the restriction of scalars is also an equivalence of the
coderived categories Dco(A•–mod) ' Dco(B•–mod). �
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The above argument is uncomplicated, but it is not quite what one would like
to have, as the reduction of questions about coderived categories to those about
the conventional derived categories that is being used here is only possible for non-
positively cohomologically graded (or simply connected positively cohomologically
graded) DG-rings, which do not at all exhaust the classes of DG-rings we are inter-
ested in. One would like to have, at least, a sufficient condition of coequivalence that
would be applicable to (C)DG-rings such as the de Rham complex, and which would
include the above Example as a particular case.

In this paper, we obtain such a sufficient condition. We start with a simpler
case of a morphism of CDG-coalgebras f : C −→ D, where a sufficient condition for
co/contra/weak equivalence is formulated in terms of a pair of increasing filtrations
on the CDG-coalgebras C and D compatible with the morphism f . Our result in
this direction is a far-reaching generalization of the assertion of [5, Theorem 4.8], ob-
tained by a completely different method. Then we pass to morphisms of topological
CDG-rings or CDG-algebras f : A −→ B, where sufficient conditions for co- and con-
traequivalence are formulated in terms of a pair of decreasing filtrations on A and B.
Both our old and new approaches to proving weak equivalence of CDG-coalgebras
are being transfered to the realm of topological CDG-algebras.

I am grateful to Wendy Lowen for stimulating questions about CDG-algebras and
to Vadim Vologodsky for stressing the importance of conditions for equivalences of
derived categories of the second kind.

1. Weak Equivalences of CDG-Coalgebras

We refer to [5, Section 4.1] for the definitions of CDG-coalgebras, CDG-comodules,
and CDG-contramodules; to [5, Section 4.2] for the definitions of absolutely acyclic
and coacyclic CDG-comodules, absolutely acyclic and contraacyclic CDG-contramod-
ules and the coderived and contraderived categories; and to [5, Section 4.8] for the
definitions of CDG-bicomodules and coacyclic CDG-bicomodules.

Let f : C −→ D be a morphism of CDG-coalgebras. We recall from [5, Sec-
tion 4.8] that the functor of (co)restriction of scalars IRf : Dco(C–comod) −→
Dco(D–comod) is left adjoint to the derived functor of (co)extension of scalars
REf : Dco(D–comod) −→ Dco(C–comod), while the functor of (contra)restriction of
scalars IRf : Dctr(C–contra) −→ Dctr(D–contra) is right adjoint to the functor of
(contra)extension of scalars LEf : Dctr(D–contra) −→ Dctr(C–contra).

Furthermore, according to [5, Section 5.4], the natural equivalences of categories
Dco(C–comod) ' Dctr(C–contra) and Dco(D–comod) ' Dctr(D–contra) transform the
functor of coextension of scalars REf into the functor of contraextension of scalars
LEf . Therefore, if any one of the functors IRf , REf , LEf , or IRf is an equivalence
of triangulated categories, then so are all of them.

Besides, the coderived category of left CDG-comodules over any CDG-coalgebra
E is compactly generated, and its full subcategory of compact objects is the
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idempotent closure of the absolute derived category Dabs(E–comodfd) of finite-
dimensional left CDG-comodules over E [5, Sections 3.11, 4.6, and 5.5]. So the
functor of corestriction of scalars is an equivalence of the coderived categories
Dco(C–comod) ' Dco(D–comod) if and only if its restriction to finite-dimensional
CDG-comodules induces an equivalence between the idempotent closures of the ab-
solute derived categories Dabs(C–comodfd) and Dabs(D–comodfd) of finite-dimensional
left CDG-comodules over the CDG-coalgebras C and D.

Since the functor of the passage to the dual vector space M 7−→ M∗ provides
an anti-equivalence Dabs(E–comodfd)

op ' Dabs(comodfd–E) between the absolute
derived categories of finite-dimensional left and right CDG-comodules over any
CDG-coalgebra E, we conclude that the corestriction of scalars with respect to a
morphism of CDG-coalgebras f : C −→ D is an equivalence between the coderived
categories of left CDG-comodules Dco(C–comod) ' Dco(D–comod) if and only
if it is an equivalence between the coderived categories of right CDG-comodules
Dco(comod–C) ' Dco(comod–D). If this is the case, we will call the morphism
f : C −→ D a weak equivalence of CDG-coalgebras.

A morphism of DG-coalgebras is called a weak equivalence if, viewed as a morphism
of CDG-coalgebras, it is a weak equivalence in the sense of the above definition.
Weak equivalences, in the sense of the above definition, whose sources and targets
are conilpotent CDG- or DG-coalgebras form a part of model category structures on
the categories of conilpotent CDG- and DG-coalgebras [5, Section 9.3].

Let F0C ⊂ F1C ⊂ F2C ⊂ · · · , C =
⋃

n FnC, be an exhastive increasing filtra-
tion of a CDG-coalgebra C = (C, d, h) compatible with the comultiplication and
the differential d on C. We recall from [5, Section 4.8] that the associated graded
coalgebra grF C has a natural CDG-coalgebra structure with the differential induced
by the differential d on the coalgebra C and the curvature linear function obtained
by restricting the curvature linear function h of the CDG-coalgebra C to the sub-
coalgebra F0C ⊂ C. In particular, F0C is a CDG-coalgebra that can be viewed as
a CDG-subcoalgebra simultaneously in C and in grF C, and at the same time as a
quotient CDG-coalgebra of grF C. The components FnC/Fn−1C of the associated
graded coalgebra grF C acquire natural structures of CDG-bicomodules over F0C.

Now let C and D be two CDG-coalgebras endowed with increasing filtrations F
as above, and let f : C −→ D be a morphism of CDG-coalgebras preserving the fil-
trations. Then the restriction of f provides a morphism of CDG-coalgebras F0C −→
F0D, and there is also the induced morphism of associated graded CDG-coalgebras
grF C −→ grF D. The maps of the associated graded components FnC/Fn−1C −→
FnD/Fn−1D can be naturally viewed as morphisms of CDG-bicomodules over F0D.

The following theorem (cf. [5, Theorem 4.8]) is the main result of this section.

Theorem 1.1. Assume that the cones of the closed morphisms FnC/Fn−1C −→
FnD/Fn−1D are coacyclic CDG-bicomodules over F0D for all n ≥ 1. Then the
morphism of CDG-coalgebras f : C −→ D is a weak equivalence provided that its
restriction F0C −→ F0D is a weak equivalence of CDG-coalgebras.
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Proof. The functors of corestriction of scalars acting between the coderived cate-
gories of left CDG-comodules over the CDG-coalgebras F0C, F0D, C, and D form
a commutative square of triangulated functors; so do the functors of corestriction
of scalars acting between the absolute derived categories of finite-dimensional left
CDG-comodules over F0C, F0D, C, and D. Since we have assumed that the corestric-
tion of scalars is an equivalence between the coderived categories of CDG-comodules
over F0C and F0D, any finite-dimensional CDG-comodule over F0D is isomorphic to
a direct summand of a finite-dimensional CDG-comodule over F0C as an object of
the coderived category Dco(F0D–comod).

Furthermore, any finite-dimensional left CDG-comodule M over C admits a finite
filtration by CDG-subcomodules FnM defined as the full preimages of the CDG-sub-
comodules FnC ⊗k M ⊂ C ⊗k M under the coaction map M −→ C ⊗k M with the
quotient CDG-comodules FnM/Fn−1M being CDG-comodules over F0C; and simi-
larly for finite-dimensional left CDG-comodules over D. Hence finite-dimensional left
CDG-comodules over F0C form a set of compact generators in both the coderived
categories Dco(C–comod) and Dco(D–comod). Therefore, in order to prove the asser-
tion of theorem it suffices to check that the triangulated functor Dco(C–comod) −→
Dco(D–comod) induces an isomorphism of the Hom spaces

HomDco(C–comod)(L,M [∗]) −−→ HomDco(D–comod)(L,M [∗])
for any two finite-dimensional left CDG-comodules L and M over F0C.

The graded vector space of morphisms L −→ M [∗] in the coderived category
Dco(C–comod) can be computed as the cohomology space of the complex of mor-
phisms of CDG-comodules from the CDG-comodule L to the CDG-comodule cobar-

resolution C̃ob(C,M) of the left CDG-comodule M over the CDG-coalgebra C. The

left CDG-comodule C̃ob(C,M) over C is constructed as the direct sum of graded left
C-comodules

C̃ob(C,M) = C ⊗k M ⊕ C ⊗k C ⊗k M [−1] ⊕ C ⊗k C ⊗k C ⊗k M [−2] ⊕ · · ·
endowed with the differential that is the sum of three summands, one of them de-
fined in terms of the comultiplication on C and the coaction of C in M , the other
one in terms of the differentials on C and M , and the third one in terms of the cur-
vature linear function on C [5, proof of Theorem 4.4] (see also [4, §3]). The complex

Cob•(L∗, C,M) = Hom•
C(L, C̃ob(C,M)) computing HomDco(C–comod)(L,M [∗]) has the

form

Cob•(L∗, C,M) = L∗ ⊗k M ⊕ L∗ ⊗k C ⊗k M [−1] ⊕ L∗ ⊗k C ⊗k C ⊗k M [−2] ⊕ · · ·
with the differential consisting of the three summands as described above.

More generally, given a sequence of CDG-coalgebras E1, . . . , Em over a field k, a
right CDG-comodule N over E1, a sequence of CDG-bicomodules Kj−1,j over Ej−1
and Ej, and a left CDG-comodule M over Em, one can construct the related cobar-
complex Cob•(N,E1, K12, . . . , Km−1,m, Em,M) as the direct sum of shifted tensor
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products⊕
n1,...,nm≥0N ⊗ E

⊗n1
1 ⊗K12 ⊗ · · · ⊗Km−1,m ⊗ E⊗nm

m ⊗M [−n1 − · · · − nm]

with the differential consisting of the three summands similar to the above.
Now we have to show that the morphism of cobar-complexes Cob•(N,C,M) −→

Cob•(N,D,M) induced by the morphism of CDG-coalgebras f : C −→ D is a
quasi-isomorphism for any finite-dimensional right CDG-comodule N and any
finite-dimensional left CDG-comodule M over the CDG-coalgebra F0C. Let us
endow both the cobar-complexes with the increasing filtrations F induced by the
filtrations F on the CDG-coalgebras C and D. The associated graded complexes
grF Cob•(N,C,M) and grF Cob•(N,D,M) are naturally identified with the cobar-
complexes Cob•(N, grF C, M) and Cob•(N, grF D, M) of the associated graded
coalgebras grF C and grF D with coefficients in the CDG-comodules N and M .

The grading components of the latter two complexes with respect to the grading
by the indices of the filtrations F admit finite filtrations whose associated quotient
complexes are direct sums of the shifts of the cobar-complexes of the sequences of
CDG-coalgebras and CDG-(bi)comodules N , F0C, Fn1C/Fn1−1C, F0C, . . . , F0C,
FnmC/Fnm−1C, F0C, M , and similarly for D. In order to deduce the assertion of
theorem, it remains to apply the following lemma. �

Lemma 1.2. Let

(N,C1, K12, . . . , Km−1,m, Cm,M) −−→ (N ′, D1, L12, . . . , Lm−1,m, Dm,M
′)

be a morphism of sequences of CDG-coalgebras and CDG-(bi)comodules as above,
i. e., Cj −→ Dj are morphisms of CDG-coalgebras, N is a right CDG-comodule over
C1, M is a left CDG-comodule over Cm, and Kj−1,j are CDG-bicomodules over Cj−1
and Cj, while N −→ N ′ is a morphism of right CDG-comodules over D1, M −→M ′

is a morphism of left CDG-comodules over Dm, and Kj−1,j −→ Lj−1,j are morphisms
of CDG-bicomodules over Dj−1 and Dj. Suppose that the cones of closed morphisms
N −→ N ′, M −→M ′, and Kj−1,j −→ Lj−1,j are coacyclic CDG-(bi)comodules over
the corresponding CDG-coalgebras, while the morphisms of CDG-coalgebras Cj −→
Dj are weak equivalences. Then the induced morphism of cobar-complexes

Cob•(N,C1, K12, . . . , Km−1,m, Cm,M) −−→ Cob•(N ′, D1, L12, . . . , Lm−1,m, Dm,M
′)

is a quasi-isomorphism.

Proof. One can transform the source sequence (N,C1, K12, . . . , Km−1,m, Cm,M) into
the target sequence (N ′, D1, L12, . . . , Lm−1,m, Dm,M

′) by replacing its elements one
by one, starting from replacing the CDG-coalgebras Cj in the first sequence with
the CDG-coalgebras Dj and then proceeding to replace the CDG-(bi)comodules N ,
M , and Kj−1,j with the CDG-(bi)comodules N ′, M ′, and Lj−1,j, respectively. This
reduces the question to the case when the source and target sequences differ in one
position only, i. e., either they differ by a one CDG-coalgebra only, or only by one
CDG-(bi)comodule. Since the cobar-complex of a sequence of CDG-coalgebras and
CDG-(bi)comodules is obviously (co)acyclic whenever one of the CDG-(bi)comodules
is coacyclic, the latter situation is clear.
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To consider the former situation, assume that N = N ′, M = M ′, Kj−1,j = Lj−1,j
for all j, and Cj = Dj for all j except some j = j0. Here it remains to notice
that the cobar-complex Cob•(N,C1, K12, . . . , Cj0 , . . . , Km−1,m, Cm,M) is isomorphic
to the cobar-complex Cob•(N ′′, Cj0 ,M

′′) for a certain right CDG-comodule N ′′ and
left CDG-comodule M ′′ over the CDG-coalgebra Cj0 (and similarly for Dj0 in place
of Cj0). One can denote these two CDG-comodules by

N ′′ = Cob(N,C1, K12, . . . , Kj0−1,j0) and M ′′ = Cob(Kj0,j0+1, . . . , Km−1,m, Cm,M),

in the obvious sense of the notation.
So the question reduces to showing that the natural morphism of complexes

Cob•(N ′′, Cj0 ,M
′′) −→ Cob•(N ′′, Dj0 ,M

′′) is a quasi-isomorphism for any right
CDG-comodule N ′′ and left CDG-comodule M ′′ over Cj0 . When the CDG-comodule
N ′′ is finite-dimensional, these are the complexes computing morphisms N ′′∗ −→
M ′′[∗] in the coderived categories Dco(Cj0–comod) and Dco(Dj0–comod), so the map
between them is a quasi-isomorphism by the assumption that the morphism of
CDG-coalgebras Cj0 −→ Dj0 is weak equivalence. The general case follows by the
passage to the direct limit over finite-dimensional CDG-subcomodules of N ′′. �

We refer to [5, Sections 4.3, 4.5, and 5.5] for the definitions of a cosemisimple
graded coalgebra and the maximal cosemisimiple graded subcoalgebra Ess ⊂ E of a
graded coalgebra E. One can easily see that the maximal cosemisimple subcoalgebra
of a nonnegatively graded coalgebra E is contained in its degree-zero component E0.

The following example illustrates a possible way of applying Theorem 1.1. Its as-
sertion is not difficult to prove by a direct argument generalizing [5, proof of Propo-
sition 3.1]; however, we prefer to use it as a demonstration of our general method.

Example 1.3. Let C• = (C0 → C1 → C2 → · · · ) and D• = (D0 → D1 → D2 →
· · · ) be two nonnegatively cohomologically graded DG-coalgebras with the maximal
cosemisimple subcoalgebras contained in the kernels of the differentials d0, that is
d0(Css) = 0 = d0(Dss). Then any comultiplicative quasi-isomorphism f : C• −→ D•,
i. e., a morphism of DG-coalgebras inducing an isomorphism H∗(C•) ' H∗(D•) of
their cohomology coalgebras, is a weak equivalence of DG-coalgebras.

Proof. Before proceeding with the proof as such, let us have a short discussion of
canonical filtrations of complexes (DG-algebras, DG-coalgebras) on which this proof
is based. Let · · · −→ En−1 −→ En −→ En+1 −→ En+2 −→ · · · be a complex of
modules over an algebra R. Then a subcomplex in E• with the cohomology modules
isomorphic to those of E• in the degrees ≤ n and vanishing in the degrees ≥ n + 1
can be constructed either as

· · · −−→ En−1 −−→ ker(dn) −−→ 0 −−→ 0 −−→ · · ·
or as

· · · −−→ En−1 −−→ En −−→ im(dn+1) −−→ 0 −−→ · · ·
Let us denote the former subcomplex by τ≤nE

• and the latter one by τ ′≤n ⊂ E•. The
two constructions are dual to each other; we will call the filtration of a complex E• by
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its subcomplexes τ≤nE
• the canonical filtration and the filtration by the subcomplexes

τ ′≤nE
• the cocanonical filtration of a complex E•.

The difference between the two constructions may appear to be insignificant, as
the quotient complexes τ ′≤nE

•/τ≤nE
• are just contractible two-term complexes. The

situation is similar for a complex of comodules E• over a coalgebra D. However,
the difference between the two filtrations becomes essential when one passes from
complexes of (co)modules to DG-algebras or DG-coalgebras.

Given a DG-algebra A•, its subcomplexes of canonical filtration τ≤nA
• form a

multiplicative filtration on A•, i. e., for any p and q ∈ Z one has

τ≤pA
• · τ≤qA• ⊂ τ≤p+qA

•.

The cocanonical filtration on A• does not have this property, i. e., one has τ ′≤pA
• ·

τ ′≤qA
• 6⊂ τ ′≤p+qA

• in general. Similarly, given a DG-coalgebra C•, its subcomplexes
of cocanonical filtration τ ′≤nC

• form a comultiplicative filtration on C•, that is

µ(τ ′≤nC
•) ⊂

∑
p+q=n τ

′
≤pC

• ⊗ τ ′≤qC•,

where µ : C −→ C ⊗k C denotes the comultiplication map. The canonical filtration
on C• does not have this property in general.

The argument proving the desired assertion now proceeds as follows. Endow the
DG-coalgebras C• and D• with the cocanonical filtrations Fn = τ ′≤n. Given our as-
sumptions on the cohomological grading of C• and D•, these are increasing filtrations
starting from F0C

• = (C0 → d(C0)), F1C
• = (C0 → C1 → d(C1)), . . . , and simi-

larly for D•. The cones of the induced morphisms FnC
•/Fn−1C

• −→ FnD
•/Fn−1D

•

are acyclic three-term complexes with DG-bicomodule structures over F0D
•.

By [5, Theorem 4.3.1(a)], these are coacyclic (and in fact even absolutely acyclic)
DG-bicomodules. Hence, according to Theorem 1.1, in order to prove that the
morphism of DG-coalgebras C• −→ D• is a weak equivalence, it suffices to show
that so is the morphism of DG-coalgebras F0C

• −→ F0D
•.

Notice that is follows from the assumptions of the example that the morphism
of graded coalgebras C −→ D identifies their maximal cosemisimple subcoalgebras,
Css ' Dss. Introduce the coradical filtrations on the grading components C0 and D0,
i. e., the filtrations by the kernels of iterated comultiplication maps NnC

0 = ker(C0 →
(C0/Css)⊗n+1) taking values in the tensor powers of the coalgebra without counit
C0/Css, and similarly for D0. Extend the filtrations Nn to the whole DG-coalgebras
F0C

• and F0D
• by the rules Nnd(C0) = d(NnC

0) and similarly for F0D
•.

Then, in particular, one has N0F0C
• = Css ' Dss = N0F0D

•. The associated
quotient complenes NnF0C

•/Nn−1F
0C• and NnF0D

•/Nn−1F0D
• are contractible two-

term complexes of bicomodules over the coalgebra N0F0C
• ' N0F0D

•. Applying
Theorem 1.1 again, we conclude that the morphism of DG-coalgebras F0C

• −→ F0D
•

is a weak equivalence. �
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2. Topological Graded Abelian Groups and Rings

3. Coequivalences of Topological CDG-Algebras

4. Co- and Contraequivalences of Topological CDG-Rings
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