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Abstract. The definition of a pseudo-dualizing complex is obtained from that
of a dualizing complex by dropping the injective dimension condition, while re-
taining the finite generatedness and homothety isomorphism conditions. In several
settings, such as those of a pair of associative rings, a pair of coassociative coal-
gebras, or a commutative ring with a weakly proregular ideal, we show that the
datum of a pseudo-dualizing complex induces a triangulated equivalence between a
pseudo-coderived category and a pseudo-contraderived category. The latter terms
mean triangulated categories standing “in between” the conventional derived cate-
gory and the coderived or the contraderived category. The constructions of these
triangulated categories use appropriate versions of the Auslander and Bass classes
of objects in the abelian categories involved. The constructions of derived functors
providing the triangulated equivalences are based on a generalization of a technique
developed in our previous paper [15].

Contents

Introduction 1
1. Pairs of Associative Rings 13
2. Pairs of Coassociative Coalgebras 36
3. Ideals in Commutative Rings 45
Appendix. Derived Functors of Finite Homological Dimension II 45
References 54

Introduction

0.1. According to the philosophy elaborated in the introduction to [15], the choice
of a dualizing complex induces a triangulated equivalence between the coderived
category of (co)modules and the contraderived category of (contra)modules, while
in order to construct an equivalence between the conventional derived categories of
(co)modules and (contra)modules one needs a dedualizing complex. In particular, an
associative ring A is a dedualizing complex of bimodules over itself, while a coasso-
ciaitve coalgebra C over a field k is a dualizing complex of bicomodules over itself.
The former assertion refers to the identity equivalence

(1) D(A–mod) = D(A–mod),
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while the latter one points to the natural triangulated equivalence between the
coderived category of comodules and the contraderived category of contramodules

(2) Dco(C–comod) ' Dctr(C–contra),

known as the derived comodule-contramodule correspondence [11, Sections 0.2.6–7
and 5.4], [12, Sections 4.4 and 5.2].

Given a left coherent ring A and a right coherent ring B, the choice of a dualiz-
ing complex of A-B-bimodules D• induces a triangulated equivalence between the
coderived and the contraderived category [7, Theorem 4.8], [16, Theorem 4.5]

(3) Dco(A–mod) ' Dctr(B–mod).

Given a left cocoherent coalgebra C and a right cocoherent coalgebra D over a field k,
the choice of a dedualizing complex of C-D-bicomodules B• induces a triangulated
equivalence between the conventional derived categories of comodules and contramod-
ules [19, Theorem 2.6]

(4) D(C–comod) ' D(D–contra).

0.2. The equivalences (1–4) of Section 0.1 are the “pure types”. The more compli-
cated and interesting triangulated equivalences of the “broadly understood co-contra
correspondence” kind are obtained by mixing these pure types, or maybe rather
building these elementary blocks on top of one another.

In particular, let R be a commutative ring and I ⊂ R be an ideal. An R-module
M is said to be I-torsion if

R[s−1]⊗RM = 0 for all s ∈ I.
Clearly, it suffices to check this condition for a set of generators {sj} of the ideal I.
An R-module P is said to be an I-contramodule if

HomR(R[s−1], P ) = 0 = Ext1
R(R[s−1], P ) for all s ∈ I.

Once again, it suffices to check these conditions for a set of generators {sj} of the
ideal I [17, Theorem 5.1]. The full subcategory of I-torsion R-modules R–modI-tors ⊂
R–mod is an abelian category with infinite direct sums and products; the embedding
functor R–modI-tors −→ R–mod is exact and preserves infinite direct sums. Sim-
ilarly, the full subcategory of I-contramodule R-modules R–modI-ctra ⊂ R–mod is
an abelian category with infinite direct sums and products; the embedding functor
R–modI-ctra −→ R–mod is exact and preserves infinite products.

The fully faithful exact embedding functor R–modI-tors −→ R–mod has a right
adjoint functor ΓI : R–mod −→ R–modI-tors (assigning to any R-module its maximal
I-torsion submodule). Assume for simplicity that R is a Noetherian ring; then the
right derived functor R∗ΓI has finite homological dimension (not exceeding the min-
imal number of generators of the ideal I). So it acts between the bounded derived
categories

RΓI : Db(R–mod) −−→ Db(R–modI-tors).

A dedualizing complex for the ring R with the ideal I ⊂ R can be produced by
applying the derived functor RΓI to the R-module R, while a dualizing complex for
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the ring R with the ideal I can be obtained by applying the functor RΓI to a dualizing
complex D•

R for the ring R,

B• = RΓI(R) and D• = RΓI(D
•
R).

Using a dedualizing complex B•, one can construct a triangulated equivalence
between the conventional derived categories of the abelian categories of I-torsion and
I-contramodule R-modules

(5) D(R–modI-tors) ' D(R–modI-ctra).

This result can be generalized to the so-called weakly proregular finitely generated
ideals I in not necessarily Noetherian commutative rings R [15, Corollary 3.5 or
Theorem 5.10].

Using a dualizing complex D•, one can construct a triangulated equvalence between
the coderived category of I-torsion R-modules and the contraderived category of
I-contramodule R-modules [13, Theorem C.1.4] (see also [13, Theorem C.5.10])

(6) Dco(R–modI-tors) ' Dctr(R–modI-ctra).

This result can be generalized from affine formal Noetherian schemes to ind-affine ind-
Noetherian or ind-coherent ind-schemes with dualizing complexes [13, Theorem D.2.7]
(see also [15, Remark 4.10]).

Informally, one can view the I-adic completion of a ring R as “a ring in the direction
of R/I and a coalgebra in the transversal direction of R relative to R/I”. In this sense,
one can say that (the formulation of) the triangulated equivalence (5) is obtained by
building (4) on top of (1), while (the idea of) the triangulated equivalence (6) is the
result of bulding (2) on top of (3).

0.3. A number of other triangulated equivalences appearing in the present author’s
work can be described as mixtures of some of the equivalences (1–4). In particular,
the equivalence between the coderived category of comodules and the contraderived
category of contramodules over a pair of corings over associative rings in [13, Corol-
laries B.4.6 and B.4.10] is another way of building (2) on top of (3).

The equivalence between the conventional derived categories of semimodules and
semicontramodules in [19, Theorem 3.3] is obtained by building (1) on top of (4).
The equivalence between the semicoderived and the semicontraderived categories of
modules in [16, Theorem 5.6] is the result of building (1) on top of (3).

The most deep and difficult in this series of triangulated equivalences is the derived
semimodule-semicontramodule correspondence of [11, Section 0.3.7] (see the proof
in a greater generality in [11, Section 6.3]). The application of this triangulated
equivalence to the categories O and Octr over Tate Lie algebras in [11, Corollary D.3.1]
is of particular importance. This is the main result of the book [11]. It can be
understood as obtainable by building (1) on top of (2).

Note that all the expressions like “can be obtained by” or “is the result of” above
refer, at best, to the formulations of the mentioned theorems, rather than to their
proofs. For example, the derived semimodule-semicontramodule correspondence, even
in the generality of [11, Section 0.3.7], is a difficult theorem. There is no way to
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deduce it from the easy (2) and the trivial (1). The formulations of (2) and (1)
serve as an inspiration and the guiding heuristics for arriving to the formulation of
the derived semimodule-semicontramodule correspondence. Subsequently, one has to
develop appropriate techniques leading to a proof.

0.4. More generally, beyond building things on top of one another, one may wish
to develop notions providing a kind of “smooth interpolation” between various con-
cepts. In particular, the notion of a discrete module over a topological ring can be
viewed as interpolating between those of a module over a ring and a comodule over
a coalgebra over a field, while the notion of a contramodule over a topological ring
(see [11, Remark A.3] or [20]) interpolates between those of a module over a ring and
a contramodule over a coalgebra over a field.

The notion of a pseudo-dualizing complex (known as a “semi-dualizing complex”
in the literature) interpolates between those of a dualizing and a dedualizing com-
plex. Similarly, the notions of a pseudo-coderived and a pseudo-contraderived cate-
gory interpolate between those of the conventional derived category and the co- or
contraderived category. The aim of this paper is to construct the related interpola-
tions between the triangulated equivalences (1) and (3), or between the triangulated
equivalences (2) and (4), or between the triangulated equivalences (5) and (6).

0.5. Three specific situations are considered separately in this paper. Firstly, let A
and B be associative rings. A pseudo-dualizing complex L• for the rings A and B is
a finite complex of A-B-bimodules satisfying the following two conditions:

(ii) the homothety maps A −→ HomDb(mod–B)(L
•, L•[∗]) and Bop −→

HomDb(A–mod)(L
•, L•[∗]) are isomorphisms of graded rings;

(iii) as a complex of left A-modules, L• is quasi-isomorphic to a bounded above
complex of finitely generated projective A-modules, and similarly, as a com-
plex of right B-modules, L• is quasi-isomorphic to a bounded above complex
of finitely generated projective B-modules.

This definition is obtained by dropping the fp-injectivity (or finite injective dimen-
sion) condition (i) from the definition of a dualizing complex of A-B-bimodules D•

in [16, Section 4] (see also the two related definitions in [16, Section 3]), removing
the coherence conditions on the rings A and B, and rewriting the finite presentability
condition (iii) accordingly.

For example, when the rings A and B coincide, the one-term complex L• = A = B
becomes the simplest example of a pseudo-dualizing complex. This is what can be
called a dedualizing complex in this context. More generally, a “dedualizing complex
of A-B-bimodules” is the same thing as a “(two-sided) tilting complex” T • in the
sense of Rickard’s derived Morita theory [22, 23].

What in our terminology would be called “pseudo-dualizing complexes of modules
over commutative Noetherian rings” were studied in the paper [2] and the references
therein under some other names, such as “semi-dualizing complexes”. What the
authors call “semidualizing bimodules” for pairs of associative rings were considered
in the paper [6]. We use this other terminology of our own in this paper, because in
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the context of the present author’s work the prefix “semi” means something related
but different and more narrow (as in [11] and [16, Sections 5–6]).

The main result of this paper in the context of pairs of associative rings A and B
provides the following commutative diagram of triangulated functors associated with
a pseudo-dualizing complex of A-B-bimodules L•:

(7)

Dco(A–mod) Dctr(B–mod)

DL•
′ (A–mod) DL•

′′ (B–mod)

D′L•(A–mod) D′′L•(B–mod)

D(A–mod) D(B–mod)

���� ����

���� ����

���� ����

Here the vertical arrows are Verdier quotient functors, while the horizontal double
lines are triangulated equivalences.

Thus DL•
′ (A–mod) and D′L•(A–mod) are certain intermediate triangulated cate-

gories between the coderived category of left A-modules Dco(A–mod) and their con-
ventional derived category D(A–mod). Similarly, DL•

′′ (B–mod) and D′′L•(B–mod) are
certain intermediate triangulated categories between the contraderived category of
left B-modules Dctr(B–mod) and their conventional derived category D(B–mod).
These intermediate triangulated quotient categories depend on, and are determined
by, the choice of a pseudo-dualizing complex L• for a pair of associative rings A
and B.

The triangulated category D′L•(A–mod) is called the lower pseudo-coderived cat-
egory of left A-modules corresponding to the pseudo-dualizing complex L•. The
triangulated category D′′L•(B–mod) is called the lower pseudo-contraderived cate-
gory of left B-modules corresponding to the pseudo-dualizing complex L•. The
triangulated category DL•

′ (A–mod) is called the upper pseudo-coderived category of
left A-modules corresponding to L•. The triangulated category DL•

′′ (B–mod) is
called the upper pseudo-contraderived category of left B-modules corresponding to L•.
The choice of a pseudo-dualizing complex L• also induces triangulated equivalences
D′L•(A–mod) ' D′′L•(B–mod) and DL•

′ (A–mod) ' DL•
′′ (A–mod) forming the commu-

tative diagram (7).
In particular, when L• = D• is a dualizing complex, i. e., the condition (i) of [16,

Section 4] is satisfied, assuming additionally that all fp-injective left A-modules have
finite injective dimensions, one has DL•

′ (A–mod) = Dco(A–mod) and DL•
′′ (B–mod) =
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Dctr(B–mod), that is the upper two vertical arrows in the diagram (7) are isomor-
phisms of triangulated categories. The upper triangulated equivalence in the dia-
gram (7) coincides with the one provided by [16, Theorem 4.5] in this case.

When L• = A = B, one has D′L•(A–mod) = D(A–mod) and D′′L•(B–mod) =
D(B–mod), that is the lower two vertical arrows in the diagram (7) are isomorphisms
of triangulated categories. The lower triangulated equivalence in the diagram (7) is
just the identity isomorphism D(A–mod) = D(B–mod) is this case. More generally,
the lower triangulated equivalence in the diagram (7) corresponding to a tilting com-
plex L• = T • recovers Rickard’s derived Morita equivalence [22, Theorem 6.4], [23,
Theorem 3.3].

0.6. A delicate point is that when A = B = R is, e. g., a Gorenstein Noetherian
commutative ring of finite Krull dimension, the ring R itself can be chosen as a dual-
izing complex of R-R-bimodules. So we are in both of the above-described situations
at the same time. Still, the derived category of R-modules D(R–mod), the coderived
category Dco(R–mod), and the contraderived category Dctr(R–mod) are three quite
different quotient categories of the homotopy category of (complexes of) R-modules
Hot(R–mod). In this case, the commutative diagram (7) takes the form

Dco(R–mod) Dctr(R–mod)

D(R–mod) D(R–mod)

���� ����

More precisely, the two Verdier quotient functors Hot(R–mod) −→ Dco(R–mod)
and Hot(R–mod) −→ Dctr(R–mod) both factorize naturally through the Verdier
quotient functor Hot(R–mod) −→ Dabs(R–mod) from the homotopy category onto
the absolute derived category of R-modules Dabs(R–mod). But the two result-
ing Verdier quotient functors Dabs(R–mod) −→ Dco(R–mod) and Dabs(R–mod) −→
Dctr(R–mod) do not form a commutative triangle with the equivalence Dco(R–mod) '
Dctr(R–mod). Rather, they are the two adjoint functors on the two sides to the
fully faithful embedding of a certain (one and the same) triangulated subcategory in
Dabs(R–mod) [12, proof of Theorem 3.9].

This example shows that one cannot hope to have a procedure recovering the
conventional derived category D(A–mod) = D(B–mod) from the dedualizing complex
L• = A = B, and at the same time recovering the coderived category Dco(A–mod)
and the contraderived category Dctr(B–mod) from a dualizing complex L• = D•.
Thus the distinction between the lower and and the upper pseudo-co/contraderived
category constructions is in some sense inevitable.

0.7. Secondly, let C and D be coassociative coalgebras over a fixed field k. A
pseudo-dualizing complex L• for the coalgebras C and D is a finite complex of
C-D-bicomodules satisfying the following two conditions:
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(ii) the homothety maps C∗ −→ HomDb(comod–D)(L
•,L•[∗]) and D∗op −→

HomDb(C–comod)(L
•,L•[∗]) are isomorphisms of graded rings;

(iii) as a complex of left C-comodules, L• is quasi-isomophic to a bounded below
complex of quasi-finitely cogenerated injective C-comodules, and similarly, as
a complex of right D-comodules, L• is quasi-isomorphic to a bounded below
complex of quasi-finitely cogenerated injective D-comodules.

This definition is obtained by dropping the finite projective and contraflat dimen-
sion condition (i) from the definition of a dedualizing complex of C-D-bicomodules
B• in [19, Section 2], removing the cocoherence conditions on the coalgebras, and
rewriting the finite copresentability condition (iii) accordingly. Here the quasi-finite
cogeneratedness is a natural weakening of the finite cogeneratedness condition on
comodules, having the advantage of being Morita-invariant [28].

For example, when the coalgebras C and D coincide, the one-term complex L• =
C = D becomes the simplest example of a pseudo-dualizing complex. This is what
can be called a dualizing complex in this context.

The main result of this paper in the setting of pairs of coalgebras C and D provides
the following diagram of triangulated functors associated with a pseudo-dualizing
complex of C-D-bicomodules L•:

(8)

Dco(C–comod) Dctr(D–contra)

DL•
′ (C–comod) DL•

′′ (D–contra)

D′L•(C–comod) D′′L•(D–contra)

D(C–comod) D(D–contra)

���� ����

���� ����

���� ����

Here, as above, the vertical arrows are Verdier quotient functors, while the horizontal
double lines are triangulated equivalences.

Thus DL•
′ (C–comod) and D′L•(C–comod) are certain intermediate triangulated

categories between the coderived category of left C-comodules Dco(C–comod) and
their conventional derived category D(C–comod). Similarly, DL•

′′ (D–contra) and
D′′L•(D–contra) are certain intermediate triangulated categories between the con-
traderived category of left D-contramodules Dctr(D–contra) and their conventional
derived category D(D–contra). These intermediate triangulated quotient categories
depend on, and are determined by, the choice of a pseudo-dualizing complex L•.
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The triangulated category D′L•(C–comod) is called the lower pseudo-coderived cat-
egory of left C-comodules corresponding to the pseudo-dualizing complex L•. The
triangulated category D′′L•(D–contra) is called the lower pseudo-contraderived cate-
gory of left D-contramodules corresponding to the pseudo-dualizing complex L•. The
triangulated category DL•

′ (C–comod) is called the upper pseudo-coderived category of
left C-comodules corresponding to L•. The triangulated category DL•

′′ (D–contra) is
called the upper pseudo-contraderived category of left D-contramodules correspond-
ing to L•. The choice of a pseudo-dualizing complex L• also induces triangulated
equivalences D′L•(C–comod) ' D′′L•(D–contra) and DL•

′ (C–comod) ' DL•
′′ (D–contra)

forming the commutative diagram (8).
In particular, when L• = B• is a dedualizing complex, i. e., the condition (i) of [19,

Section 2] is satisfied, one has D′L•(C–comod) = D(C–comod) and D′′L•(D–contra) =
D(D–contra), that is the lower two vertical arrows in the diagram (8) are isomor-
phisms of triangulated categories. The lower triangulated equivalence in the dia-
gram (8) coincides with the one provided by [19, Theorem 2.6] in this case.

When L• = C = D, one has DL•
′ (C–comod) = Dco(C–comod) and DL•

′′ (D–contra) =
Dctr(D–contra), that is the upper two vertical arrows in the diagram (8) are
isomorphisms of triangulated categories. The upper triangulated equivalence
in the diagram (8) is the derived comodule-contramodule correspondence of [11,
Sections 0.2.6–0.2.7] and [12, Section 5.2] in this case.

0.8. Thirdly, let R be a commutative ring and I ⊂ R be a finitely generated ideal.
Let R = lim←−nR/I

n denote the I-adic completion of the ring R. Assume that the ideal

I in R is weakly proregular in the sense of [24, 10]. A pseudo-dualizing complex L•

for the ideal I ⊂ R is a finite complex of I-torsion R-modules satisfying the following
two conditions:

(ii) the homothety map R −→ HomDb(R–modI-tors)(L
•, L•[∗]) is an isomorphism of

graded rings;
(iii) for any finite complex of finitely generated projective R-modules K• with

I-torsion cohomology modules, the complex of R-modules HomR(K•, L•) is
quasi-isomorphic to a bounded above complex of finitely generated projective
R-modules.

This definition is obtained by dropping the finite projective and contraflat dimen-
sion condition (i) and weakening the finiteness condition (iii) in the definition of a
dedualizing complex of I-torsion R-modules B• in [15, Section 5].

Notice that in the assumptions of [15, Section 4] the definition of a dedualizing
complex of I-torsion R-modules given there also becomes a particular case of the
above definition, as the condition (iii) in [15, Section 4] implies our condition (iii).
Furthermore, our definition of a pseudo-dualizing complex of I-torsion R-modules
can be also obtained by weakening the conditions in the definition of a dualizing
complex of I-torsion R-modules in [13, Section C.1] (cf. the definition of a dualizing
complex over a pair of pro-coherent topological rings in [13, Section D.2]).
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The main result of this paper in the context of ideals I in commutative rings R
provides provides the following diagram of triangulated functors associated with a
pseudo-dualizing complex of I-torsion R-modules L•:

(9)

Dco(R–modI-tors) Dctr(R–modI-ctra)

DL•
′ (R–modI-tors) DL•

′′ (R–modI-ctra)

D′L•(R–modI-tors) D′′L•(R–modI-ctra)

D(R–modI-tors) D(R–modI-ctra)

���� ����

���� ����

���� ����

Here, once again, the vertical arrows are Verdier quotient functors, while the hori-
zontal double lines are triangulated equivalences.

Thus D′L•(R–modI-tors) is a certain intermediate triangulated category between the
coderived category of I-torsion R-modules Dco(R–modI-tors) and their conventional
derived category D(R–modI-tors). Similarly, D′′L•(R–modI-ctra) is a certain interme-
diate triangulated category between the contraderived category of I-contramodule
R-modules Dctr(R–modI-ctra) and their conventional derived category D(R–modI-ctra).
These intermediate triangulated quotient categories depend on, and are determined
by, the choice of a pseudo-dualizing complex L•.

The triangulated category D′L•(R–modI-tors) is called the lower pseudo-coderived
category of I-torsion R-modules corresponding to the pseudo-dualizing complex L•.
The triangulated category D′′L•(R–modI-ctra) is called the lower pseudo-contraderived
category of I-contramodule R-modules corresponding to the pseudo-dualizing com-
plex L•. The triangulated category DL•

′ (R–modI-tors) is called the upper pseudo-
coderived category of I-torsion R-modules corresponding to the pseudo-dualizing
complex L•. The triangulated category DL•

′′ (R–modI-ctra) is called the upper pseudo-
contraderived category of I-contramodule R-modules corresponding to the pseudo-
dualizing complex L•. The choice of a pseudo-dualizing complex L• also induces tri-
angulated equivalences D′L•(R–modI-tors) ' D′′L•(R–modI-ctra) and DL•

′ (R–modI-tors) '
DL•
′′ (R–modI-ctra) forming the commutative diagram (9).
In particular, when L• = B• is a dedualizing complex, i. e., the conditions (i)

and (iii) of [15, Section 5] or the conditions (i) and (iii) of [15, Section 4] are satisfied,
one has D′L•(R–modI-tors) = Dco(R–modI-tors) and D′′L•(R–modI-ctra) = D(R–modI-ctra);
in other words, the lower two vertical arrows in the diagram (9) are isomorphisms
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of triangulated categories. The lower triangulated equivalence in the diagram (9)
coincides with the one provided by [15, Theorem 5.10] or [15, Theorem 4.9] in this
case.

When L• = D• is a dualizing complex, i. e., the appropriate generalization of the
definition in [13, Section C.1] or the appropriate particular case of the definition
in [13, Section D.2] is applicable, one has D′L•(R–modI-tors) = Dco(R–modI-tors) and
D′′L•(R–modI-ctra) = Dctr(R–modI-ctra); in other words, the upper two vertical arrows
in the diagram (9) are isomorphisms of triangulated categories. The upper triangu-
lated equivalence in the diagram (9) is the related generalization of the triangulated
equivalence in [13, Theorem C.1.4] or a particular case of the triangulated equivalence
in [13, Theorem D.2.7] in this case.

0.9. Before we finish this introduction, let us have a brief general discussion of
pseudo-derived categories. This is a generic term for the pseudo-coderived and
pseudo-contraderived categories. The following constructions of such triangulated
categories were introduced for the purposes of the forthcoming paper [21].

Let A be an exact category (in Quillen’s sense). We will say that a full subcategory
E ⊂ A is coresolving if E is closed under extensions and the passages to the cokernels of
admissible monomorphisms in E, and every object of A is the source of an admissible
monomorphism into an object of E. This definition slightly differs from that in [25,
Section 2] in that we do not require E to be closed under direct summands (cf. [13,
Section A.3]). Obviously, any coresolving subcategory E inherits an exact category
structure from the ambient exact category A.

Let A be an exact category in which the functors of infinite direct sum are ev-
erywhere defined and exact. We refer to [11, Section 2.1], [13, Section A.1], or [15,
Appendix A] for the definition of the coderived category Dco(A). A triangulated cat-
egory D′ is called a pseudo-coderived category of A if triangulated Verdier quotient
functors Dco(A) −→ D′ −→ D(A) are given forming a commutative triangle with the
canonical Verdier quotient functor Dco(A) −→ D(A) between the coderived and the
conventional unbounded derived category of the exact category A.

Let E ⊂ A be a coresolving subcategory closed under infinite direct sums. Ac-
cording to the dual version of [13, Proposition A.3.1(b)] (formulated explicitly
in [16, Proposition 2.1]), the triangulated functor between the coderived categories
Dco(E) −→ Dco(A) induced by the direct sum-preserving embedding of exact cate-
gories E −→ A is an equivalence of triangulated categories. From the commutative
diagram of triangulated functors

Dco(E) Dco(A)

D(E) D(A)

���� ����

//

one can see that the lower horizontal arrow is a Verdier quotient functor. Thus
D′ = D(E) is a pseudo-coderived category of A.

10



Furthermore, let E′ ⊂ E′ ⊂ A be two embedded coresolving subcategories, both
closed under infinite direct sums in A. Then the canonical Verdier quotient functor
Dco(A) −→ D(A) decomposes into a sequence of Verdier quotient functors

Dco(A) −−→ D(E′) −−→ D(E′) −−→ D(A).

In other words, when the full subcategory E ⊂ A is expanded, the related preudo-
coderived category D(E) gets deflated.

Notice that, as a coresolving subcategory closed under infinite direct sums E ⊂ A
varies, its conventional derived category behaves in quite different ways depending
on the boundedness conditions. The functor Db(E′) −→ Db(E′) induced by the em-
bedding E′ −→ E′ is fully faithful, the functor D+(E′) −→ D+(E′) is a triangulated
equivalence (by the assertion dual to [13, Proposition A.3.1(a)]), and the functor
D(E′) −→ D(E′) is a Verdier quotient functor.

Let B be another exact category. We will say that a full subcategory F ⊂ B is
resolving if F is closed under extensions and the passages to the kernels of admissible
epimorphisms, an every object of A is the target of an admissible epimorphism from
an object of F. Obviously, a resolving subcategory F inherits an exact category
structure from the ambient exact category B.

Let B be an exact category in which the functors of infinite product are everywhere
defined and exact. The definition of the contraderived category Dctr(B) can be found
in [11, Section 4.1], [13, Section A.1], or [15, Appendix A]. A triangulated category D′′

is called a pseudo-contraderived category of B if Verdier quotient functors Dctr(B) −→
D′′ −→ D(B) are given forming a commutative triangle with the canonical Verdier
quotient functor Dctr(B) −→ D(B) between the contraderived and the convenional
unbounded derived categories of the exact category B.

Let F ⊂ B be a resolving subcategory closed under infinite products. Accord-
ing to [13, Proposition A.3.1(b)], the triangulated functor between the contraderived
categories Dctr(F) −→ Dctr(B) induced by the product-preserving embedding of exact
categories F −→ B is an equivalence of triangulated categories. From the commuta-
tive diagram of triangulated functors

Dctr(F) Dctr(B)

D(F) D(B)

���� ����

//

one can see that the lower horizontal arrow is a Verdier quotient functor. Thus
D′′ = D(F) is a pseudo-contraderived category of B.

Let F′′ ⊂ F′′ ⊂ B be two embedded resolving subcategories, both closed under
infinite products in F. Then the canonical Verdier quotient functor Dctr(B) −→ D(B)
decomposes into a sequence of Verdier quotient functors

Dctr(B) −−→ D(F′′) −−→ D(F′′) −−→ D(B).

11



In other words, when the full subcategory F ⊂ B is expanded, the related pseudo-
contraderived category D(F) gets deflated.

Once again, we notice that, as a resolving subcategory closed under infinite prod-
ucts F ⊂ B varies, the behavior of its conventional derived category depends on the
boundedness conditions. The functor Db(F′′) −→ Db(F′′) is fully faithful, the functor
D−(F′′) −→ D−(F′′) is a triangulated equivalence [13, Proposition A.3.1(a)], and the
functor D(F′′) −→ D(F′′) is a Verdier quotient functor.

0.10. It remains to say a few words about where do the exact subcategories E′ ⊂
E′ ⊂ A and F′′ ⊂ F′′ ⊂ B come from in the three settings of Sections 0.5–0.8 (in the
respective abelian categories A and B). The larger subcategories E′ and F′′ are our
versions of what are called the Auslander and Bass classes in the literature [2, 5, 6].
Specifically, F′′ is the Auslander class and E′ is the Bass class.

The two full subcategories E′ and F′′ are certain natural smaller classes. One can
say, in some approximate sense, that E′ and F′′ are the maximal corresponding classes,
while E′ and F′′ are the minimal corresponding classes in the categories A and B.

More precisely, there is a natural single way to define the full subcategories E′ ⊂ A
and F′′ ⊂ B when the pseudo-dualizing complex L• or L• is a one-term complex. In
the general case, we have two sequences of embedded subcategories Ed1 ⊂ Ed1+1 ⊂
Ed1+2 ⊂ · · · ⊂ A and Ed1 ⊂ Fd1+1 ⊂ Fd1+2 ⊂ · · · ⊂ B indexed by the large enough in-
tegers. All the subcategories El1 with varying index l1 = d1, d1 +1, d1 +2, . . . are “the
same up to finite homological dimension”, and so are all the subcategories Fl1 . Hence
the triangulated functors D(El1) −→ D(El1+1) and D(Fl1) −→ D(Fl1+1) induced by the
exact embeddings El1 −→ El1+1 and Fl1 −→ Fl1+1 are triangulated equivalences, so
the pseudo-derived categories D′L•(A) = D(El1) and D′′L•(B) = D(Fl1) do not depend
on the choice of the number l1.

The idea of the construction of the triangulated equivalence between the two lower
pseudo-derived categories is that the functor D′L•(A) −→ D′′L•(B) should be a version
of RHom(L•,−), while the inverse functor D′′L•(B) −→ D′L•(A) is a version of derived
tensor product L• ⊗L −. The full subcategories El1 ⊂ A and Fl1 ⊂ B are defined
by the conditions of uniform boundedness of cohomology of such Hom and tensor
product complexes (hence dependence on a fixed bound l1) and the composition of
the two operations leading back to the original object.

The point is that the two functors RHom(L•,−) and L• ⊗L − are mutually in-
verse when viewed as acting between the pseudo-derived categories D(E) and D(F),
but objects of the pseudo-derived categories are complexes viewed up to a more deli-
cate equivalence relation than in the conventional derived categories D(A) and D(B).
When this subtlety is ignored, the two functors cease to be mutually inverse, gen-
erally speaking, and such mutual inverseness needs to be enforced as an additional
adjustness restriction on the objects one is working with.

Similarly, there is a natural single way to define the full subcategories E′ ⊂ A
and F′′ ⊂ F when the pseudo-dualizing complex L• or L• is a one-term complex. In
the general case, we have two sequences of embedded subcategories Ed2 ⊃ Ed2+1 ⊃
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Ed2+2 ⊃ · · · in A and Fd2 ⊃ Fd2+1 ⊃ Fd2+2 ⊂ · · · in B, indexed by large enough inte-
gers. As above, all the subcategories El2 with varying l2 = d2, d2 + 1, d2 + 2, . . . are
“the same up to finite homological dimension”, and so are all the subcategories Fl2 .
Hence the triangulated functors D(El2+1) −→ D(El2) and D(Fl2+1) −→ D(Fl2) in-
duced by the exact embeddings El2+1 −→ El2 and Fl2+1 −→ Fl2 are triangulated
equivalences, so the pseudo-derived categories DL•

′ (A) = D(El2) and DL•
′′ (B) = D(Fl2)

do not depend on the choice of the number l2.
The triangulated equivalence between the two upper pseudo-derived categories

is also provided by some versions of derived functors RHom(L•,−) and L• ⊗L −.
The full subcategories El2 ⊂ A and Fl2 ⊂ B are produced by a kind of generation
process. One starts from declaring that all the injectives in A belong to El2 and
all the projectives in B belong to Fl2 . Then one proceeds with generating further
objects of Fl2 by applying RHom(L•,−) to objects of El2 , and further objects of El2

by applying L•⊗L− to objects of Fl2 . One needs to resolve the complexes so obtained
to produce objects of the abelian module categories, and the number l2 indicates the
length of the resolutions used. More objects are added to El2 and Fl2 to make these
full subcategories closed under the operations mentioned above.

We refer to the main body of the paper for further details.

Acknowledgement. I am grateful to Vladimir Hinich, Jan Trlifaj, Jan Št’ov́ıček,
and Hanno Becker for helpful discussions. The author’s research is supported by the
Israel Science Foundation grant # 446/15 and by the Grant Agency of the Czech
Republic under the grant P201/12/G028.

1. Pairs of Associative Rings

1.1. Strongly finitely presented modules. Let A be an associative ring. We
denote by A–mod the abelian category of left A-modules and by mod–A the abelian
category of right A-modules. An A-module is said to be strongly finitely presented if
it has a projective resolution consisting of finitely generated projective A-modules.

Lemma 1.1.1. Let 0 −→ K −→ L −→ M −→ 0 be a short exact sequence of
A-modules. Then whenever two of the three modules K, L, M are strongly finitely
presented, so is the third one.

Proof. If P• −→ K and R• −→ M are projective resolutions of the A-modules K
and M , then there is a projective resolution Q• −→ L of the A-module L with
the terms Qi ' Pi ⊕ Ri. If P• −→ K and Q• −→ L are projective resolutions of
the A-modules K and L, then there exists a morphism of complexes of A-modules
P• −→ Q• inducing the given morphism K −→ L on the homology modules. The
cone R• of the morphism of complexes P• −→ Q• is a projective resulution of the
A-module M with the terms Ri ' Qi ⊕ Pi−1.

If Q• −→ L and R• −→ M are projective resolutions of the A-modules L and
M , then there exists a morphism of complexes of A-modules Q• −→ R• inducing the
given morphism L −→M on the homology modules. The cocone P ′• of the morphism
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of complexes Q• −→ R• is a bounded above complex of R-modules with the terms
P ′i = Qi ⊕ Ri+1 and the only nonzero cohomology module H0(P ′•) ' K. Still, the
complex P ′• is not yet literally a projective resolution of K, as its term P ′−1 ' R0

does not vanish. Setting P−1 = 0, P0 = ker(P ′0 → P ′−1), and P ′i = Pi for i > 2, one
obtains a subcomplex P• ⊂ P ′• with a termwise split embedding P• −→ P ′• such that
P• is a projective resolution of the R-module K. �

Abusing terminology, we will say that a bounded above complex of A-modules M •

is strongly finitely presented if it is quasi-isomorphic to a bounded above complex
of finitely generated projective A-modules. Clearly, the class of all strongly finitely
presented complexes is closed under shifts and cones in D−(A–mod).

Lemma 1.1.2. (a) Any bounded above complex of strongly finitely presented
A-modules is strongly finitely presented.

(b) Let M • be a complex of A-modules concentrated in the cohomological de-
grees 6 n, where n is a fixed integer. Then M • is strongly finitely presented if and
only if it is quasi-isomorphic to a complex of finitely generated projective A-modules
concentrated in the cohomological degrees 6 n.

(c) Let M • be a finite complex of A-modules concentrated in the cohomological
degrees n1 6 m 6 n2. Then M • is strongly finitely presented if and only if it is quasi-
isomorphic to a complex of A-modules R• concentrated in the cohomological degrees
n1 6 m 6 n2 such that the A-modules Rm are finitely generated and projective for all
n1 + 1 6 m 6 n2, while the A-module Rn1 is strongly finitely presented. �

Let A and B be associative rings. A left A-module J is said to be sfp-injective if
Ext1

A(M,J) = 0 for all strongly finitely presented left A-modules M , or equivalently,
ExtnA(M,J) = 0 for all strongly finitely presented left A-modules M and all n > 0.
A left B-module P is said to be sfp-flat if TorB1 (N,P ) = 0 for all strongly finitely
presented right B-modules N , or equivalently, TorBn (N,P ) = 0 for all strongly finitely
presented right B-modules N and all n > 0.

Lemma 1.1.3. (a) The class of all sfp-injective left A-modules is closed under ex-
tensions, the cokernels of injective morphisms, filtered inductive limits, infinite direct
sums, and infinite products.

(b) The class of all sfp-flat left B-modules is closed under extensions, the kernels
of surjective morphisms, filtered inductive limits, infinite direct sums, and infinite
products. �

Examples 1.1.4. (1) The following construction using strongly finitely presented
modules provides some examples of pseudo-coderived categories of modules over
an associative ring in the sense of Section 0.9 of the Introduction. Let A be an
associative ring and S be a set of strongly finitely presented left A-modules. De-
note by E ⊂ A = A–mod the full subcategory formed by all the left A-modules
E such that ExtiA(S,E) = 0 for all S ∈ S and all i > 0. Then the full subcate-
gory E ⊂ A–mod is a coresolving subcategory closed under infinite direct sums (and
products). So the induced triangulated functor between the two coderived categories
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Dco(E) −→ Dco(A–mod) is a triangulated equivalence by the dual version of [13,
Proposition A.3.1(b)] (cf. [16, Proposition 2.1]). Thus the derived category D(E) of
the exact category E is a pseudo-coderived category of the abelian category A–mod,
that is an intermediate quotient category between the coderived category Dco(A–mod)
and the derived category D(A–mod), as explained in Section 0.9.

(2) In particular, if S = ∅, then one has E = A–mod. On the other hand, if S
is the set of all strongly finitely presented left A-modules, then the full subcategory
E ⊂ A–mod consists of all the sfp-injective modules. When the ring A is left coherent,
all the finitely presented left A-modules are strongly finitely presented, and objects
of the class E are called fp-injective left A-modules. In this case, the derived category
D(E) of the exact category E is equivalent to the homotopy Hot(A–modinj) of the
additive category of injective left A-modules [26, Theorem 6.12].

(3) More generally, for any associative ring A, the category Hot(A–modinj) can
be called the coderived category in the sense of Becker [1] of the category of left
A-modules. A complex of left A-modules X• is called coacyclic in the sense of
Becker if the complex of abelian groups HomA(X•, J•) is acyclic for any complex
of injective left A-modules J•. According to [1, Proposition 1.3.6(2)], the full sub-
categories of complexes of injective modules and coacyclic complexes in the sense
of Becker form a semiorthogonal decomposition of the homotopy category of left
A-modules Hot(A–mod). According to [12, Theorem 3.5(a)], any coacyclic complex
of left A-modules in the sense of [11, Section 2.1], [15, Appendix A] is also coacyclic
in the sense of Becker. Thus Hot(A–modinj) occurs as an intermediate triangulated
quotient category between Dco(A–mod) and D(A–mod). So the coderived category
in the sense of Becker is a pseudo-coderived category in our sense.

We do not know whether the Verdier quotient functor Dco(A–mod) −→
Hot(A–modinj) is a triangulated equivalence (or, which is the same, the natural
fully faithful triangulated functor Hot(A–modinj) −→ Dco(A–mod) is a triangulated
equivalence) for an arbitrary associative ring A. Partial results in this direction are
provided by [12, Theorem 3.7] and [16, Theorem 2.4] (see also Proposition 1.6.1
below).

Examples 1.1.5. (1) The following dual version of Example 1.1.4(1) provides some
examples of pseudo-contraderived categories of modules. Let B be an associative
ring and S be a set of strongly finitely presented right B-modules. Denote by F ⊂
B = B–mod the full subcategory formed by all the left B-modules F such that
TorBi (S, F ) = 0 for all S ∈ S and i > 0. Then the full subcategory F ⊂ B–mod
is a resolving subcategory closed under infinite products (and direct sums). So the
induced triangulated functor between the two contraderived categories Dctr(F) −→
Dctr(B–mod) is a triangulated equivalence by [13, Proposition A.3.1(b)]. Thus the
derived category D(F) of the exact category F is a pseudo-contraderived category of
the abelian category B–mod, that is an intermediate quotient category between the
contraderived category Dctr(B–mod) and the derived category D(B–mod), as it was
explained in Section 0.9 of the Introduction.
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(2) In particular, if S = ∅, then one has F = B–mod. On the other hand, if S is
the set of all strongly finitely presented right B-modules, then the full subcategory
F ⊂ B–mod consists of all the sfp-flat modules. When the ring B is right coherent,
all the sfp-flat left B-modules are flat and F is the full subcategory of all flat left
B-modules. For any associative ring B, the derived category of exact category of flat
left B-modules is equivalent to the homotopy category Hot(B–modproj) of the additive
category of projective left B-modules [9, Proposition 8.1 and Theorem 8.6].

(3) For any associative ring B, the category Hot(B–modproj) can be called the
contraderived category in the sense of Becker of the category of left B-modules. A
complex of left B-modules Y • is called contraacyclic in the sense of Becker if the
complex of abelian groups HomB(P •, Y •) is acyclic for any complex of projective
left B-modules P •. According to [1, Proposition 1.3.6(1)], the full subcategories of
contraacyclic complexes in the sense of Becker and complexes of projective modules
form a semiorthogonal decomposition of the homotopy category of left B-modules
Hot(B–mod). According to [12, Theorem 3.5(b)], any contraacyclic complex of left
B-modules in the sense of [11, Section 4.1], [15, Appendix A] is also contraacyclic in
the sense of Becker. Thus Hot(B–modproj) occurs as an intermediate triangulated quo-
tient category between Dctr(B–mod) and D(B–mod). So the contraderived category
in the sense of Becker is a pseudo-contraderived category in our sense.

We do not know whether the Verdier quotient functor Dctr(B–mod) −→
Hot(B–modproj) is a triangulated equivalence (or, which is the same, the natural
fully faithful triangulated functor Hot(B–modproj) −→ Dctr(B–mod) is a triangulated
equivalence) for an arbitrary associative ring B. A partial result in this direction
is provided by [12, Theorem 3.8] (cf. [16, Theorem 4.4]; see also Proposition 1.6.2
below).

1.2. Auslander and Bass classes. We recall the definition of a pseudo-dualizing
complex of bimodules from Section 0.5 of the Introduction. Let A and B be associa-
tive rings.

A pseudo-dualizing complex L• for the rings A and B is a finite complex of
A-B-bimodules satisfying the following two conditions:

(ii) the homothety maps A −→ HomDb(mod–B)(L
•, L•[∗]) and Bop −→

HomDb(A–mod)(L
•, L•[∗]) are isomorphisms of graded rings;

(iii) the complex L• is strongly finitely presented as a complex of left A-modules
and as a complex of right B-modules.

Here the condition (iii) refers to the definition of a strongly finitely presented complex
of modules in Section 1.1. The complex L• is viewed as an object of the bounded
derived category of A-B-bimodules Db(A–mod–B).

We will use the following simplified notation: given two complexes of left A-mod-
ules M • and N •, we denote by ExtnA(M •, N •) the groups HnRHomA(M •, N •) =
HomD(A–mod)(M

•, N •[n]). Given a complex of right B-modules N • and a complex of

left B-modules M •, we denote by TorBn (N •,M •) the groups H−n(N • ⊗L
B M

•).
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The tensor product functor L• ⊗B − : Hot(B–mod) −→ Hot(A–mod) acting be-
tween the unbounded homotopy categories of left B-modules and left A-modules
is left adjoint to the functor HomA(L•,−) : Hot(A–mod) −→ Hot(B–mod). Us-
ing homotopy flat and homotopy injective resolutions of the second arguments,
one constructs the derived functors L• ⊗L

B − : D(B–mod) −→ D(A–mod) and
RHomA(L•,−) : D(A–mod) −→ D(B–mod) acting between the (conventional) un-
bounded derived categories of left A-modules and left B-modules. As always with
the left and right derived functors (e. g., in the sense of Deligne [3, 1.2.1–2]), the
functor L• ⊗L

B − is left adjoint to the functor RHomA(L•,−) [11, Lemma 8.3].
Suppose that the finite complex L• is situated in the cohomological degrees −d1 6

m 6 d2. Then one has ExtnA(L•, J) = 0 for all n > d1 and all sfp-injective left
A-modules J . Similarly, one has TorBn (L•, P ) = 0 for all n > d1 and all sfp-flat left
B-modules P . Choose an integer l1 > d1 and consider the following full subcategories
in the abelian categories of left A-modules and left B-modules:

• El1 = El1(L
•) ⊂ A–mod is the full subcategory consisting of all the A-modules

E such that ExtnA(L•, E) = 0 for all n > l1 and the adjunction morphism
L• ⊗L

B RHomA(L•, E) −→ E is an isomorphism in D−(A–mod);
• Fl1 = Fl1(L

•) ⊂ B–mod is the full subcategory consisting of all the B-modules
F such that TorBn (L•, F ) = 0 for all n > l1 and the adjunction morphism
F −→ RHomA(L•, L• ⊗L

B F ) is an isomorphism in D+(B–mod).

Clearly, for any l′′1 > l′1 > d1, one has El′1 ⊂ El′′1 ⊂ A–mod and Fl′1 ⊂ Fl′′1 ⊂ B–mod.
The category Fl1 is our version of what is called the Auslander class in [2, 5, 6], while
the category El1 is our version of the Bass class.

Lemma 1.2.1. (a) The full subcategory El1 ⊂ A–mod is closed under the cokernels
of injective morphisms, extensions, and direct summands.

(b) The full subcategory Fl1 ⊂ B–mod is closed under the kernels of surjective
morphisms, extensions, and direct summands. �

Lemma 1.2.2. (a) The full subcategory El1 ⊂ A–mod contains all the injective left
A-modules.

(b) The full subcategory Fl1 ⊂ B–mod contains all the flat left B-modules.

Proof. Part (a): let ′L• be a bounded above complex of finitely generated pro-
jective right B-modules endowed with a quasi-isomorphism of complexes of right
B-modules ′L• −→ L•. Then the complex ′L• ⊗B HomA(L•, J) computes L• ⊗L

B

RHomA(L•, J) as an object of the derived category of abelian groups for any injec-
tive left A-module J . Now we have an isomorphism of complexes of abelian groups
′L• ⊗B HomA(L•, J) ' HomA(HomBop(′L•, L•), J) and a quasi-isomorphism of com-
plexes of left A-modules A −→ HomBop(′L•, L•), implying that the natural morphism
L• ⊗L

B RHomA(L•, J) −→ J is an isomorphism in the derived category of abelian
groups, hence also in the derived category of left A-modules.

Part (b): let ′′L• be a bounded above complex of finitely generated projective
right A-modules endowed with a quasi-isomorphism of complexes of right A-modules
′′L• −→ L•. Then the complex HomA(′′L•, L• ⊗B P ) represents the derived category
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object RHomA(L•, L• ⊗L
B P ) for any flat left B-module P . Now we have an isomor-

phism of complexes of abelian groups HomA(′′L•, L• ⊗B P ) ' HomA(′′L•, L•) ⊗B P
and a quasi-isomorphism of complexes of right B-modules B −→ HomA(′′L•, L•). �

If L• is finite complex of A-B-modules that are strongly finitely presented as left
A-modules and as right B-modules, then the class El1 contains also all the sfp-injective
left A-modules and the class Fl1 contains all the sfp-flat left B-modules.

Lemma 1.2.3. (a) The full subcategory El1 ⊂ A–mod is closed under infinite direct
sums and products.

(b) The full subcategory Fl1 ⊂ B–mod is closed under infinite direct sums and
products.

Proof. The functor RHomA(L•,−) : D(A–mod) −→ D(B–mod) preserves infinite di-
rect sums of uniformly bounded below families of complexes and infinite products of
arbitrary families of complexes. The functor L• ⊗L

B − : D(B–mod) −→ D(A–mod)
preserves infinite products of uniformly bounded above families of complexes and in-
finite direct sums of arbitrary families of complexes. These observations imply both
the assertions (a) and (b). �

The full subcategories El1 ⊂ A–mod and Fl1 ⊂ B–mod inherit exact cate-
gory structures from the abelian categories A–mod and B–mod. It follows from
Lemma 1.2.1 or 1.2.2 that the induced triangulated functors Db(El1) −→ Db(A–mod)
and Db(Fl1) −→ Db(B–mod) are fully faithful. The following lemma describes their
essential images.

Lemma 1.2.4. (a) Let M • be a complex of left A-modules concentrated in the co-
homological degrees −n1 6 m 6 n2. Then M • is quasi-isomorphic to a complex of
left A-modules concentrated in the cohomological degrees −n1 6 m 6 n2 with the
terms belonging to the full subcategory El1 ⊂ A–mod if and only if ExtnA(L•,M •) = 0
for n > n2 + l1 and the adjunction morphism L• ⊗L

B RHomA(L•,M •) −→ M • is an
isomorphism in D−(A–mod).

(b) Let N • be a complex of left B-modules concentrated in the cohomological de-
grees −n1 6 m 6 n2. Then N • is quasi-isomorphic to a complex of left B-modules
concentrated in the cohomological degrees −n1 6 m 6 n2 with the terms belonging to
the full subcategory Fl1 ⊂ B–mod if and only if TorBn (L•, N •) = 0 for n > n1 + l1
and the adjunction morphism N • −→ RHomA(L•, L• ⊗L

B N
•) is an isomorphism in

D+(B–mod).

Proof. Standard argument based on Lemmas 1.2.1–1.2.2. �

Thus the full subcategory Db(El1) ⊂ D(A–mod) consists of all the com-
plexes of left A-modules M • with bounded cohomology such that the complex
RHomA(L•,M •) also has bounded cohomology and the adjunction morphism
L• ⊗L

B RHomA(L•,M •) −→ M • is an isomorphism. Similarly, the full subcategory
Db(Fl1) ⊂ D(A–mod) consists of all the complexes of left B-modules N • with
bounded cohomology such that the complex L•⊗L

BN
• also has bounded cohomology

and the adjunction morphism N • −→ RHomA(L•, L• ⊗L
B N

•) is an isomorphism.
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These full subcategories are usually called the derived Bass and Auslander classes.
As any pair of adjoint functors restricts to an equivalence between the full subcat-
egories of all objects whose adjunction morphisms are isomorphisms, the functors
RHomA(L•,−) and L• ⊗L

B − restrict to a triangulated equivalence

(10) Db(El1) ' Db(Fl1).

Lemma 1.2.5. (a) For any A-module E ∈ El1, the object RHomA(L•, E) ∈
Db(B–mod) can be represented by a complex of B-modules concentrated in the
cohomological degrees −d2 6 m 6 l1 with the terms belonging to Fl1.

(b) For any B-module F ∈ Fl1, the object L•⊗L
BF ∈ Db(A–mod) can be represented

by a complex of A-modules concentrated in the cohomological degrees −l1 6 m 6 d2

with the terms belonging to El1.

Proof. Follows from Lemma 1.2.4. �

We refer to [25, Section 2] and [13, Section A.5] for discussions of the coresolution
dimension of objects of an exact category A with respect to its coresolving subcate-
gory E and the resolution dimension of objects of an exact category B with respect
to its resolving subcategory F (called the right E-homological dimension and the left
F-homological dimension in [13]).

Lemma 1.2.6. (a) For any integers l′′1 > l′l > d1, the full subcategory El′′1 ⊂ A–mod
consists precisely of all the left A-modules whose El′1-coresolution dimension does not
exceed l′′1 − l′1.

(b) For any integers l′′1 > l′1 > d1, the full subcategory Fl′′1 ⊂ B–mod consists
precisely of all the left B-modules whose Fl′1-resolution dimension does not exceed
l′′1 − l′1. �

Remark 1.2.7. In particular, it follows from Lemmas 1.2.2 and 1.2.6 that, for any
n > 0, all the left A-modules of injective dimension not exceeding n belong to Ed1+n

and all the left B-modules of flat dimension not exceeding n belong to Fd1+n.

We refer to [13, Section A.1] or [15, Appendix A] for the definitions of exotic derived
categories occuring in the next proposition.

Proposition 1.2.8. For any l′′1 > l′1 > d1 and any conventional or exotic derived
category symbol ? = b, +, −, ∅, abs+, abs−, co, ctr, or abs, the exact embedding
functors El′1 −→ El′′1 and Fl′1 −→ Fl′′1 induce triangulated equivalences

D?(El′1) ' D?(El′′1 ) and D?(Fl′1) ' D?(Fl′′1 ).

Proof. In view of [13, Proposition A.5.6], the assertions follow from Lemma 1.2.6. �

In particular, the unbounded derived category D(El1) is the same for all l1 > d1

and the unbounded derived category D(Fl1) is the same for all l1 > d1.
As it was explained in Section 0.9 of the Introduction, it follows from Lem-

mas 1.2.1–1.2.3 by virtue of [13, Proposition A.3.1(b)] that the natural Verdier
quotient functor Dco(A–mod) −→ D(A–mod) factorizes into two Verdier quotient
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functors Dco(A–mod) −→ D(El1) −→ D(A–mod), and the natural Verdier quotient
functor Dctr(B–mod) −→ D(B–mod) factorizes into two Verdier quotient functors
Dctr(B–mod) −→ D(Fl1) −→ D(B–mod). In other words, the triangulated category
D(El1) is a pseudo-coderived category of left A-modules and the triangulated category
D(Fl1) is a pseudo-contraderived category of left B-modules.

These are called the lower pseudo-coderived category of left A-modules and the
lower pseudo-contraderived category of left B-modules corresponding to the pseudo-
dualizing complex L•. The notation is

D′L•(A–mod) = D(El1) and D′′L•(B–mod) = D(Fl1).

The next theorem provides, in particular, a triangulated equivalence between the
lower pseudo-coderived and the lower pseudo-contraderived category,

D′L•(A–mod) = D(El1) ' D(Fl1) = D′′L•(B–mod).

Theorem 1.2.9. For any symbol ? = b, +, −, ∅, abs+, abs−, co, ctr, or abs, there
is a triangulated equivalence D?(El1) ' D?(Fl1) provided by (appropriately defined)
mutually inverse functors RHomA(L•,−) and L• ⊗L

B −.

Proof. This is a particular case of Theorem 1.3.2 below. �

1.3. Abstract corresponding classes. More generally, suppose that we are given
two full subcategories E ⊂ A–mod and F ⊂ B–mod satisfying the following conditions
(for some fixed integers l1 and l2):

(I) the full subcategory E ⊂ A–mod is closed under extensions and the cokernels
of injective morphisms, and contains all the injective left A-modules;

(II) the full subcategory F ⊂ B–mod is closed under extensions and the kernels of
surjective morphisms, and contains all the projective left B-modules;

(III) for any A-module E ∈ E, the object RHomA(L•, E) ∈ D+(B–mod) can be
represented by a complex of B-modules concentrated in the cohomological
degrees −l2 6 m 6 l1 with the terms belonging to F;

(IV) for any B-module F ∈ F, the object L•⊗L
BF ∈ D−(A–mod) can be represented

by a complex of A-modules concentrated in the cohomological degrees −l1 6
m 6 l2 with the terms belonging to E.

One can see from the conditions (I) and (III), or (II) and (IV), that l1 > d1 and
l2 > d2 if H−d1(L•) 6= 0 6= Hd2(L•). According to Lemmas 1.2.1, 1.2.2, and 1.2.5, the
two classes E = El1 and F = Fl1 satisfy the conditions (I–IV) with l2 = d2.

The following lemma, providing a kind of converse implication, can be obtained as
a byproduct of the proof of Theorem 1.3.2 below (based on the arguments in the ap-
pendix). It is somewhat counterintuitive, claiming that the adjunction isomorphism
conditions on the modules in the classes E and F, which were necessary in the context
of the previous Section 1.2, follow from the conditions (I–IV) in our present context.
So we prefer to present a separate explicit proof.

Lemma 1.3.1. (a) For any A-module E ∈ E, the adjunction morphism L• ⊗L
B

RHomA(L•, E) −→ E is an isomorphism in Db(A–mod).
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(b) For any B-module F ∈ F, the adjunction morphism F −→ RHomA(L•,
L• ⊗L

B F ) is an isomorphism in Db(B–mod).

Proof. We will prove part (a); the proof of part (b) is similar. Specifically, let
0 −→ E −→ K0 −→ K1 −→ · · · be an exact sequence of left A-modules with
E ∈ E and Ki ∈ E for all i > 0. Suppose that the adjunction morphisms L• ⊗L

B

RHomA(L•, Ki) −→ Ki are isomorphisms in Db(A–mod) for all i > 0. We will show
that the adjunction morphism L• ⊗L

B RHomA(L•, E) −→ E is also an isomorphism
in this case. As injective left A-modules belong to E by the condition (I), the desired
assertion will then follow from Lemma 1.2.2(a).

Let Zi denote the kernel of the differentialKi −→ Ki+1; in particular, Z0 = E. The
key observation is that, according to the condition (I), one has Zi ∈ E for all i > 0.
For every i > 0, choose a coresolution of the short exact sequence 0 −→ Zi −→
Ki −→ Zi+1 by short exact sequences of injective left A-modules 0 −→ Y i,j −→
J i,j −→ Y i+1,j −→ 0, j > 0. Applying the functor HomA(L•,−) to the complexes
of left A-modules J i,• and Y i,•, we obtain short exact sequences of complexes of left
B-modules 0 −→ Gi,• −→ F i,• −→ Gi+1,• −→ 0, where Gi,• = HomA(L•, Y i,•) and
F i,• = HomA(L•, J i,•). According the condition (III), each complex Gi,• and F i,• is
quasi-isomorphic to a complex of left B-modules concentrated in the cohomological
degrees −l2 6 m 6 l1 with the terms belonging to F.

For every i > 0, choose complexes projective left B-modules Qi,• and P i,•, concen-
trated in the cohomological degrees 6 l1 and endowed with quasi-isomorphisms of
complexes of left B-modules Qi,• −→ Gi,• and P i,• −→ F i,• so that there are short
exact sequences of complexes of left B-modules 0 −→ Qi,• −→ P i,• −→ Qi+1,• −→ 0
and the whole diagram is commutative. Applying the functor L• ⊗B − to the com-
plexes of lef B-modules P i,• and Qi,•, we obtain short exact sequences of complexes
of left A-modules 0 −→ N i,• −→M i,• −→ N i+1,• −→ 0, where N i,• = L•⊗BQi,• and
M i,• = L• ⊗B P i,•. It follows from the condition (IV) that each complex M i,• and
N i,• is quasi-isomorphic to a complex of left A-modules concentrated in the cohomo-
logical degrees −l1 − l2 6 m 6 l1 + l2. In particular, the cohomology modules of the
complexes M i,• and N i,• are concentrated in the degrees −l1 − l2 6 m 6 l1 + l2.

Applying the functors of two-sided canonical truncation τ>−l1−l2τ6l1+l2 to the com-
plexes M i,• and N i,•, we obtain short exact sequences 0 −→ ′N i,• −→ ′M i,• −→
′N i+1,• −→ 0 of complexes whose terms are concentrated in the cohomological de-
grees −l1 − l2 6 m 6 l1 + l2. Similarly, applying the functors of canonical trunca-
tion τ6l1+l2 to the complexes J i,• and Y i,•, we obtain short exact sequences 0 −→
′Y i,• −→ ′J i,• −→ ′Y i+1,• −→ 0 of complexes whose terms are concentrated in the
cohomological degrees 0 6 m 6 l1 + l2. Now we have two morphisms of bicomplexes
′M i,j −→ ′J i,j and Ki −→ ′J i,j, which are both quasi-isomorphisms of finite complexes
along the grading j at every fixed degree i, by assumption. Furthermore, we have
two morphisms of bicomplexes ′N0,j −→ ′M i,j and ′Y 0,j −→ ′J i,j, which are both
quasi-isomorphisms along the grading i at every fixed degree j, by construction. We
also have a quasi-isomorphism E −→ ′Y 0,•.

21



Passing to the total complexes, we see that the morphism of complexes ′N0,• −→
′Y 0,• is a quasi-isomorphism, because so are the morphisms ′N0,• −→ ′M •,•, ′M •,• −→
′J•,•, and ′Y 0,• −→ ′J•,• in a commutative square. This proves that the adjunction
morphism L•⊗L

BRHomA(L•, E) −→ E is an isomorphism in the derived category. �

Assuming that l1 > d1 and l2 > d2, it is now clear from the conditions (III–IV)
and Lemma 1.3.1 that one has E ⊂ El1 and F ⊂ Fl1 for any two classes of objects
E ⊂ A–mod and F ⊂ B–mod satisfying (I–IV). Furthermore, it follows from the con-
ditions (I–II) that the triangulated functors Db(E) −→ Db(A–mod) and Db(F) −→
Db(B–mod) induced by the exact embeddings E −→ A–mod and F −→ B–mod
are fully faithful. Hence so are the triangulated functors Db(E) −→ Db(El1) and
Db(F) −→ Db(Fl1). In view of the conditions (III–IV), we can conclude that equiva-
lence (10) restricts to a triangulated equivalence

(11) Db(E) ' Db(F).

The following theorem is the main result of Section 1.

Theorem 1.3.2. Let E ⊂ A–mod and F ⊂ B–mod be a pair of full subcate-
gories of modules satisfying the conditions (I–IV) for a pseudo-dualizing complex
of A-B-bimodules L•. Then for any symbol ? = b, +, −, ∅, abs+, abs−, co, ctr,
or abs, there is a triangulated equivalence D?(E) ' D?(F) provided by (appropriately
defined) mutually inverse functors RHomA(L•,−) and L• ⊗L

B −.
Here, in the case ? = co it is assumed that the full subcategories E ⊂ A–mod and

F ⊂ B–mod are closed under infinite direct sums, while in the case ? = ctr it is
assumed that these two full subcategories are closed under infinite products.

Proof. This is a straightforward application of the results of the appendix. In the
context of the appendix, set

A = A–mod ⊃ E ⊃ J = A–modinj

B = B–mod ⊃ F ⊃ P = B–modproj.

Consider the adjoint pair of DG-functors

Ψ = HomA(L•,−) : C+(J) −−→ C+(B)

Φ = L• ⊗B − : C−(P) −−→ C−(A).

Then the conditions of Sections A.1 and A.3 are satisfied, so the constructions of
Sections A.2–A.3 provide the derived functors RΨ and LΦ. The arguments in Sec-
tion A.4 show that these two derived functors are naturally adjoint to each other, and
the first assertion of Theorem A.5 explains how to deduce the claim that they are
mutually inverse triangulated equivalences from the triangulated equivalence (11).

Alternatively, applying the second assertion of Theorem A.5 together with
Lemma 1.2.2 allows to reprove the triangulated equivalence (11) rather than use it,
thus obtaining another and more “conceptual” proof of Lemma 1.3.1. �
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Now suppose that we have two pairs of full subcategories E′ ⊂ E′ ⊂ A–mod and
F′′ ⊂ F′′ ⊂ B–mod such that both the pairs (E′,F′′) and (E′,F′′) satisfy the condi-
tions (I–IV), and both the full subcategories E′ and E′ are closed under infinite direct
sums in A–mod, while both the full subcategories F′′ and F′′ are closed under infinite
products in B–mod. Then, in view of the discussion in Section 0.9 of the Introduction
and Theorem 1.3.2 (for ? = ∅), we have a diagram of triangulated functors

(12)

Dco(A–mod) Dctr(B–mod)

D(E′) D(F′′)

D(E′) D(F′′)

D(A–mod) D(B–mod)

���� ����

���� ����

���� ����

The vertical arrows are Verdier quotient functors, so both the triangulated cate-
gories D(E′) and D(E′) are preudo-coderived categories of left A-modules, and both
the triangulated categories D(F′′) and D(F′′) are pseudo-contraderived categories of
left B-modules. The horizontal double lines are triangulated equivalences. The inner
square in the diagram (12) is commutative, as one can see from the construction of
the derived functors in Theorem 1.3.2.

1.4. Minimal corresponding classes. Let A and B be associative rings, and L•

be a pseudo-dualizing complex of A-B-bimodules.

Proposition 1.4.1. Fix l1 = d1 and l2 > d2. Then there exists a unique minimal
pair of full subcategories El2 = El2(L•) ⊂ A–mod and Fl2 = Fl2(L•) ⊂ B–mod
satisfying the conditions (I–IV) together with the additional requirements that El2 is
closed under infinite direct sums in A–mod and Fl2 is closed under infinite products
in B–mod. For any pair of full subcategories E ⊂ A–mod and F ⊂ B–mod satisfying
the conditions (I–IV) such that E is closed under infinite direct sums in A–mod and
F is closed under infinite products in B–mod one has El2 ⊂ E and Fl2 ⊂ F.

Proof. The full subcategories El2 ⊂ A–mod and Fl2 ⊂ B–mod are constructed simul-
taneously by a kind of generation process. By construction, for any full subcategories
E ⊂ A–mod and F ⊂ B–mod as above we will have El2 ⊂ E and Fl2 ⊂ F. In partic-
ular, the pair of full subcategories E = Ed1 and F = Fd1 satisfies all the mentioned
conditions, so we will have El2 ⊂ Ed1 and Fl2 ⊂ Fd1 .

Firstly, all the injective left A-modules belong to El2 and all the projective left
B-modules belong to Fl2 , as dictated by the conditions (I–II). Secondly, let E be
an A-module belonging to El2 . Then E ∈ Ed1 , so the derived category object
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RHomA(L•, E) ∈ Db(B–mod) has cohomology modules concentrated in the degrees
−d2 6 m 6 d1. Pick a complex of left B-modules F • representing RHomA(L•, E)
such that F • is concentrated in the degrees −l2 6 m 6 d1 and the B-modules Fm

are projective for all −l2 + 1 6 m 6 d1. According to [13, Corollary A.5.2], we have
F−l2 ∈ F. So we say that the B-module F−l2 belongs to Fl2 . Similarly, let F be a
B-module belonging to Fl2 . Then F ∈ Fd1 , so the derived category object L• ⊗L

B F
has cohomology modules concentrated in the degrees −d1 6 m 6 d2. Pick a complex
of left A-modules E• representing L• ⊗L

B F such that E• is concentrated in the de-
grees −d1 6 m 6 l2 and the A-modules Em are injective for all −d1 6 m 6 l2 − 1.
According to the dual version of [13, Corollary A.5.2], we have El2 ∈ E. So we say
that the A-module El2 belongs to El2 .

Thirdly and finally, we add to El2 all the extensions, cokernels of injective mor-
phisms, and infinite direct sums of its objects, and similarly add to Fl2 all the ex-
tensions, kernels of surjective morphisms, and infinite products of its objects. Then
the second and third steps are repeated in transfinite iterations, as it may be nec-
essary, until all the modules that can be obtained in this way have been added and
the full subcategories of all such modules El2 ⊂ A–mod and Fl2 ⊂ B–mod have been
formed. �

Remark 1.4.2. It is clear from the construction in the proof of Proposition 1.4.1
that for any two values of the parameters l1 > d1 and l2 > d2, and any two full
subcategories E ⊂ A–mod and F ⊂ B–mod satisfying the conditions (I-IV) with the
parameters l1 and l2 such that E is closed under infinite direct sums in A–mod and F
is closed under infinite products in B–mod, one has El2 ⊂ E and Fl2 ⊂ F.

Notice that the conditions (III–IV) become weaker as the parameter l2 increases.
It follows that one has El2 ⊃ El2+1 and Fl2 ⊃ Fl2+1 for all l2 > d2. So the inclusion
relations between our classes of modules have the form

· · · ⊂ Ed2+2 ⊂ Ed2+1 ⊂ Ed2 ⊂ Ed1 ⊂ Ed1+1 ⊂ Ed1+2 ⊂ · · · ⊂ A–mod

· · · ⊂ Fd2+2 ⊂ Fd2+1 ⊂ Fd2 ⊂ Fd1 ⊂ Fd1+1 ⊂ Fd1+2 ⊂ · · · ⊂ B–mod

Lemma 1.4.3. Let n > 0 and l1 > d1, l2 > d2 + n be some integers. Let E ⊂
A–mod and F ⊂ B–mod be a pair of full subcategories satisfying the conditons (I–IV)
with the parameters l1 and l2. Denote by E(n) ⊂ A–mod the full subcategory of all
left A-modules of E-coresolution dimension not exceeding n and by F(n) ⊂ B–mod
the full subcategory of all left B-modules of F-resolution dimension not exceeding n.
Then the two classes of modules E(n) and F(n) satisfy the conditions (I–IV) with the
parameters l1 + n and l2 − n.

Proof. According to [25, Proposition 2.3(2)] or [13, Lemma A.5.4(a-b)] (and the as-
sertions dual to these), the full subcategories E(n) ⊂ A–mod and F(n) ⊂ B–mod
satisfy the conditions (I–II). Using [13, Corollary A.5.5(b)], one shows that for any
A-module E ∈ E(n) the derived category object RHomA(L•, E) ∈ Db(B–mod) can be
represented by a complex concentrated in the cohomological degrees −l2 6 m 6 l1+n
with the terms belonging to F. Moreover, one has ExtmA (L•, E) = 0 for all m < −d2.
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It follows that RHomA(L•, E) can be also represented by a complex concentrated in
the cohomological degrees −l2 + n 6 m 6 l1 + n with the terms belonging to F(n).
Similarly one can show that for any B-module F ∈ F(n) the derived category object
L•⊗L

B F ∈ Db(A–mod) can be represented by a complex concentrated in the cohomo-
logical degrees −l1 − n 6 m 6 l2 with the terms belonging to E. Moreover, one has
TorB−m(L•, F ) = 0 for all m > d2. It follows that L• ⊗L

B F can be also represented by
a complex concentrated in the cohomological degrees −l1 − n 6 m 6 l2 − n with the
terms belonging to E(n). This proves the conditions (III–IV). �

Proposition 1.4.4. For any l′′2 > l′2 > d2 and any conventional or exotic derived
category symbol ? = b, +, −, ∅, abs+, abs−, or abs, the exact embedding functors
El
′′
2 −→ El

′
2 and Fl

′′
2 −→ Fl

′
2 induce triangulated equivalences

D?(El
′′
2 ) ' D?(El

′
2) and D?(Fl

′′
2 ) ' D?(Fl

′
2).

The same exact embeddings also induce triangulated equivalences

Dco(El
′′
2 ) ' Dco(El

′
2) and Dctr(Fl

′′
2 ) ' Dctr(Fl

′
2).

Proof. As in Proposition 1.2.8, we check that the El
′′
2 -coresolution dimension of any

object of El
′
2 does not exceed l′′2 − l′2 and the Fl

′′
2 -resolution dimension of any object of

Fl
′
2 does not exceed l′′2− l′2. Indeed, according to Lemma 1.2.6, the pair of full subcat-

egories El
′′
2 (l′′2 − l′2) ⊂ A–mod and Fl

′′
2 (l′′2 − l′2) ⊂ B–mod satisfies the conditions (I–IV)

with the parameters l1 = d1 + l′′2 − l′2 and l2 = l′2. Furthermore, since infinite direct
sums are exact and the full subcategory El

′′
2 is closed under infinite direct sums in

A–mod, so is the full subcategory El
′′
2 (l′′2 − l′2). Since infinite products are exact and

the full subcategory Fl
′′
2 is closed under infinite products in B–mod, so is the full

subcategory Fl
′′
2 (l′′2 − l′2). It follows that El

′
2 ⊂ El

′′
2 (l′′2 − l′2) and Fl

′
2 ⊂ Fl

′′
2 (l′′2 − l′2). �

In particular, the unbounded derived category D(El2) is the same for all l2 > d2

and the unbounded derived category D(Fl2) is the same for all l2 > d2.
As it was explained in Section 0.9 of the Introduction, it follows from the con-

dition (I) together with the condition that El2 is closed under infinite direct sums
in A–mod that the natural Verdier quotient functor Dco(A–mod) −→ D(A–mod)
factorizes into two Verdier quotient functors Dco(A–mod) −→ D(El2) −→ D(A–mod).
Similarly, it follows from the condition (II) together with the condition that Fl2

is closed under infinite products in B–mod that the natural Verdier quotient
functor Dctr(B–mod) −→ D(B–mod) factorizes into two Verdier quotient functors
Dctr(B–mod) −→ D(Fl2) −→ D(B–mod). In other words, the triangulated category
D(El2) is a pseudo-coderived category of left A-modules and the triangulated category
D(Fl2) is a pseudo-contraderived category of left B-modules.

These are called the upper pseudo-coderived category of left A-modules and the
upper pseudo-contraderived category of left B-modules corresponding to the pseudo-
dualizing complex L•. The notation is

DL•
′ (A–mod) = D(El2) and DL•

′′ (B–mod) = D(Fl2).
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The next theorem provides, in particular, a triangulated equivalence between the
upper pseudo-coderived and the upper pseudo-contraderived category,

DL•
′ (A–mod) = D(El2) ' D(Fl2) = DL•

′′ (B–mod).

Theorem 1.4.5. For any symbol ? = b, +, −, ∅, abs+, abs−, or abs, there is a tri-
angulated equivalence D?(El2) ' D?(Fl2) provided by (appropriately defined) mutually
inverse functors RHomA(L•,−) and L• ⊗L

B −.

Proof. This is another particular case of Theorem 1.3.2. �

Substituting E′ = El1 , E′ = El2 , F′′ = Fl1 , and F′′ = Fl2 (for some l1 > d1

and l2 > d2) into the commutative diagram of triangulated functors (12) from Sec-
tion 1.3, one obtains the commutative diagram of triangulated functors (7) promised
in Section 0.5 of the Introduction.

1.5. Dedualizing complexes. Let A and B be associative rings. A dedualizing
complex of A-B-bimodules L• = T • is a pseudo-dualizing complex (according to the
definition in Section 1.2) satisfying the following additional condition:

(i) As a complex of left A-modules, T • is quasi-isomorphic to a finite complex
of projective A-modules, and as a complex of right B-modules, T • is quasi-
isomorphic to a finite complex of projective B-modules.

Taken together, the conditions (i) and (iii) mean that, as a complex of left
A-modules, T • is quasi-isomorphic to a finite complex of finitely generated projective
A-modules, and as a complex of right B-modules, T • is quasi-isomorphic to a finite
complex of finitely generated projective B-modules. In other words, T • is a perfect
complex of left A-modules and a perfect complex of right B-modules.

This definition of a dedualizing complex is slightly less general than that of a tilting
complex in the sense of [23, Theorem 1.1] and slightly more general than that of a
two-sided tilting complex in the sense of [23, Definition 3.4].

Let L• = T • be a dedualizing complex of A-B-bimodules. We refer to the
beginning of Section 1.2 for the discussion of the pair of adjoint derived func-
tors RHomA(T •,−) : D(A–mod) −→ D(B–mod) and T • ⊗L

B − : D(B–mod) −→
D(A–mod).

Proposition 1.5.1. The derived functors RHomA(T •,−) and T •⊗L
B− are mutually

inverse triangulated equivalences between the conventional unbounded derived cate-
gories D(A–mod) and D(B–mod).

Proof. We have to show that the adjunction morphisms are isomorphisms. Let J• be
a homotopy injective complex of left A-modules. Then the complex of left B-modules
HomA(T •, J•) represents the derived category object RHomA(T •, J•) ∈ D(B–mod).
Let ′T • be a finite complex of finitely generated projective right B-modules endowed
with a quasi-isomorphism of complexes of right B-modules ′T • −→ T •. Then the
adjunction morphism T • ⊗L

B RHomA(T •, J•) −→ J• is represented, as a morphism
in the derived category of abelian groups, by the morphism of complexes ′T • ⊗B
HomA(T •, J•) −→ J•. Now the complex of abelian groups ′T • ⊗B HomA(T •, J•) is
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naturally isomorphic to HomA(HomBop(′T •, T •), J•), and the morphism of complexes
of left A-modules A −→ HomBop(′T •, T •) is a quasi-isomorphism by the condition (ii).

Similarly, let P • be a homotopy flat complex of left B-modules. Then the com-
plex of left A-modules T • ⊗B P • represents the derived category object T • ⊗L

B

P • ∈ D(A–mod). Let ′′T • be a finite complex of finitely generated projective
left A-modules endowed with a quasi-isomorphism of complexes of left A-modules
′′T • −→ T •. Then the adjunction morphism P • −→ RHomA(T •, T • ⊗L

B P
•) is rep-

resented, as a morphism in the derived category of abelian groups, by the morphism
of complexes P • −→ HomA(′′T •, T • ⊗B P •). Now the complex of abelian groups
HomA(′′T •, T •⊗BP •) is naturally isomorphic to HomA(′′T •, T •)⊗BP •, and the mor-
phism of complexes of right B-modules B −→ HomA(′′T •, T •) is a quasi-isomorphism
by the condition (ii). �

In particular, it follows that the derived Bass and Auslander classes associated
with a dedualizing complex L• = T • (as discussed in Section 1.2) coincide with the
whole bounded derived categories Db(A–mod) and Db(B–mod), and the triangulated
equivalence (10) takes the form Db(A–mod) ' Db(B–mod).

Now let us choose the parameter l1 in such a way that T • is quasi-isomorphic to a
complex of (finitely generated) projective left A-modules concentrated in the coho-
mological degrees −l1 6 m 6 d2 and to a complex of (finitely generated) projective
right B-modules concentrated in the cohomological degrees −l1 6 m 6 d2. Then we
have El1(T

•) = A–mod and Fl1(T
•) = B–mod.

Corollary 1.5.2. For any symbol ? = b, +, −, ∅, abs+, abs−, co, ctr, or abs, there
is a triangulated equivalence D?(A–mod) ' D?(B–mod) provided by (appropriately
defined) mutually inverse functors RHomA(T •,−) and T • ⊗L

B −.

Proof. This is a particular case of Theorem 1.2.9. �

1.6. Dualizing complexes. Let A and B be associative rings. Our aim is to work
out a generalization of the results of [16, Sections 2 and 4] falling in line with the
exposition in the present Section 1.

Firstly we return to the discussion of sfp-injective and sfp-flat modules started
in Section 1.1. Denote the full subcategory of sfp-injective left A-modules by
A–modsfpin ⊂ A–mod and the full subcategory of sfp-flat left B-modules by
B–modsfpfl ⊂ B–mod. It is clear from Lemma 1.1.3 that the categories A–modsfpin

and B–modsfpfl have exact category structures inherited from the abelian categories
A–mod and B–mod.

Proposition 1.6.1. (a) The triangulated functor Dco(A–modsfpin) −→ Dco(A–mod)
induced by the embedding of exact categories A–modsfpin −→ A–mod is an equivalence
of triangulated categories.

(b) If all sfp-injective left A-modules have finite injective dimensions, then the
triangulated functor Hot(A–modinj) −→ Dco(A–mod) induced by the embedding of
additive/exact categories A–modinj −→ A–mod is an equivalence of triangulated cat-
egories.
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Proof. Part (a) is but an application of the assertion dual to [13, Proposition A.3.1(b)]
(cf. [16, Theorem 2.2]). Part (b) was proved in [12, Section 3.7] (for a more general ar-
gument, one can use the assertion dual to [13, Corollary A.6.2]). In fact, the assump-
tion in part (b) can be weakened by requiring only that fp-injective left A-modules
have finite injective dimensions, as infinite direct sums of fp-injective left A-modules
are fp-injective over an arbitrary ring (cf. [16, Theorem 2.4]). �

Proposition 1.6.2. (a) The triangulated functor Dctr(B–modsfpfl) −→ Dctr(B–mod)
induced by the embedding of exact categories B–modsfpfl −→ B–mod is an equivalence
of triangulated categories.

(b) If all sfp-flat left B-modules have finite projective dimensions, then the tri-
angulated functor Hot(B–modproj) −→ Dctr(B–mod) induced by the embedding of
additive/exact categories B–modproj −→ B–mod is an equivalence of triangulated
categories.

Proof. Part (a) is but an application of [13, Proposition A.3.1(b)] (cf. [16, Theo-
rem 4.4]). Part (b) was proved in [12, Section 3.8] (for a more general argument,
see [13, Corollary A.6.2]). �

The following lemma is a version of [16, Lemma 4.1] applicable to arbitrary rings.

Lemma 1.6.3. (a) Let P be a flat left B-module and K be an A-sfp-injective
A-B-bimodule. Then the tensor product K ⊗B P is an sfp-injective left A-module.

(b) Let J be an injective left A-module and K be a B-sfp-injective A-B-bimodule.
Then the left B-module HomA(K, J) is sfp-flat.

Proof. This is a particular case of the next Lemma 1.6.4. �

Lemma 1.6.4. (a) Let P • be a complex of flat left B-modules concentrated in the
cohomological degrees −n 6 m 6 0 and K• be a complex of A-B-bimodules which,
as a complex of left A-modules, is quasi-isomorphic to a complex of sfp-injective
A-modules concentrated in the cohomological degrees −d 6 m 6 l. Then the tensor
product K• ⊗B P • is a complex of left A-modules quasi-isomorphic to a complex of
sfp-injective left A-modules concentrated in the cohomological degrees −n−d 6 m 6 l.

(b) Let J• be a complex of injective left A-modules concentrated in the cohomo-
logical degrees 0 6 m 6 n and K• be a complex of A-B-bimodules which, as a
complex of right B-modules, is quasi-isomorphic to a complex of sfp-injective right
B-modules concentrated in the cohomological degrees −d 6 m 6 l. The the complex of
left B-modules HomA(K•, J•) is quasi-isomorphic to a complex of sfp-flat B-modules
concentrated in the cohomological degrees −l 6 m 6 n+ d.

Proof. Part (a): clearly, the tensor product K• ⊗B P • is quasi-isomorphic to a com-
plex of left A-modules concentrated in the cohomological degrees −n − d 6 m 6 l;
the nontrivial aspect is to show that there is such a complex with sfp-injective tems.
Equivalently, this means that ExtiA(M, K• ⊗B P •) = 0 for all strongly finitely pre-
sented left A-modules M and all i > l. Indeed, let R• be a resolution of M by finitely
generated projective left A-modules. Without loss of generality, we can assume that
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K• is a finite complex of A-B-bimodules. Then the complex HomA(R•, K• ⊗B P •)
is isomorphic to HomA(R•, K•) ⊗B P • and the cohomology modules of the complex
HomA(R•, K•) are concentrated in the degrees −d 6 m 6 l.

Part (b): clearly, the complex HomA(K•, J•) is quasi-isomorphic to a complex of
left B-modules concentrated in the cohomological degrees −l 6 m 6 n+ d; we have
to show that there is such a complex with sfp-flat terms. Equivalently, this means
that TorBi (N,HomA(K•, J•)) = 0 for all strongly finitely presented right B-modules
N and all i > l. Indeed, let Q• be a resolution of N by finitely generated pro-
jective right B-modules. Without loss of generality, we can assume that K• is a
finite complex of A-B-bimodules. Then the complex Q• ⊗B HomA(K•, J•) is iso-
morphic to HomA(HomBop(Q•, K•), J•) and the cohomology modules of the complex
HomBop(Q•, K•) are concentrated in the degrees −d 6 m 6 l. �

A dualizing complex of A-B-bimodules L• = D• is a pseudo-dualizing complex (ac-
cording to the definition in Section 1.2) satisfying the following additional condition:

(i) As a complex of left A-modules, D• is quasi-isomorphic to a finite complex
of sfp-injective A-modules, and as a complex of right B-modules, T • is quasi-
isomorphic to a finite complex of sfp-injective B-modules.

This definition of a dualizing complex is a version of the definition of a weak
dualizing complex in [16, Section 3] (see also the definition of a dualizing complex
in [16, Section 4]) extended from the case of coherent rings to arbitrary rings A and B.
Still, in order to prove the results below, we will have to impose some homological
dimension conditions on the rings A and B, bringing our definition of a dualizing
complex even closer to the definition of a weak dualizing complex in [16].

Specifically, we will have to assume that all sfp-injective left A-modules have finite
injective dimensions. This assumption always holds when the ring A is left coherent
and there exists an integer n > 0 such that every left ideal in A is generated by at
most ℵn elements [16, Proposition 2.3].

We will also have to assume that all sfp-flat left B-modules have finite projective
dimensions. For a right coherent ring B, this would simply mean that all flat left
B-modules have finite projective dimensions. The class of rings satisfying the latter
condition was discussed, under the name of “left n-perfect rings”, in the paper [5].
We refer to [16, Proposition 4.3], the discussions in [7, Section 3] and [12, Section 3.8],
and the references therein, for further sufficient conditions.

Let us choose the parameter l2 in such a way that D• is quasi-isomorphic to a
complex of sfp-injective left A-modules concentrated in the cohomological degrees
−d1 6 m 6 l2 and to a compex of sfp-injective right B-modules concentrated in the
cohomological degrees −d1 6 m 6 l2.

Proposition 1.6.5. Let A and B be associative rings such that all sfp-injective left
A-modules have finite injective dimensions and all sfp-flat left B-modules have finite
projective dimensions. Let L• = D• be a dualizing complex of A-B-bimodules, and let
the parameter l2 be chosen as stated above. Then the related minimal corresponding
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classes El2 = El2(D•) and Fl2 = Fl2(D•) are contained in the classes of sfp-injective
A-modules and spf-flat B-modules modules, El2 ⊂ A–modsfpin and Fl2 ⊂ B–modsfpfl.

Moreover, let n > 0 be an integer such that the injective dimensions of sfp-injective
left A-modules do not exceed n and the projective dimensions of sfp-flat left B-modules
do not exceed n. Then the classes of modules E = A–modsfpin and F = B–modsfpfl

satisfy the conditions (I–IV) with the parameters l1 = n+ d1 and l2.

Proof. The second assertion holds, as the conditions (I–II) are satisfied by
Lemma 1.1.3 and the conditions (III–IV) hold by Lemma 1.6.4. The first as-
sertion follows from the second one together with Lemma 1.1.3. �

Let B–modflat ⊂ B–mod denote the full subcategory of flat left B-modules. It
inherits the exact category structure of the abelian category B–mod.

Corollary 1.6.6. Let A and B be associative rings such that all sfp-injective left
A-modules have finite injective dimensions and all sfp-flat left B-modules have finite
projective dimensions. Let L• = D• be a dualizing complex of A-B-bimodules, and
let the parameter l2 be chosen as above. Then there is a triangulated equivalence
Dco(A–mod) ' Dctr(B–mod) provided by (appropriately defined) mutually inverse
functors RHomA(D•,−) and D• ⊗L

B −.
Furthermore, there is a chain of triangulated equivalences

Dco(A–mod) ' Dabs=∅(A–modsfpin) ' Dabs=∅(El2) '
Hot(A–modinj) ' Hot(B–modproj)

' Dabs=∅(Fl2) ' Dabs=∅(B–modflat) ' Dabs=∅(B–modsfpfl) ' Dctr(B–mod),

where the notation Dabs=∅(C) is a shorthand for an identity isomorphism of triangu-
lated categories Dabs(C) = D(C) between the absolute derived category and the con-
ventional derived category of an exact category C. Moreover, for any symbol ? = b,
+, −, or ∅, there are triangulated equivalences

D?(A–modsfpin) ' D?(El2)

' Hot?(A–modinj) ' Hot?(B–modproj)

' D?(Fl2) ' D?(B–modflat) ' D?(B–modsfpfl).

Proof. The exact categories A–modsfpin and B–modsfpfl have finite homological di-
mensions by assumption. Hence so do their full subcategories El2 , Fl2 , and B–modflat

satisfying the condition (I) or (II). It follows easily (see, e. g., [11, Remark 2.1] and [13,
Proposition A.5.6]) that a complex in any one of these exact categories is acyclic if
and only if it is absolutely acyclic, and that their (conventional or absolute) derived
categories are equivalent to the homotopy categories of complexes of injective or pro-
jective objects. The same, of course, applies to the coderived and/or contraderived
categories of those of these exact categories that happen to be closed under the in-
finite direct sums or infinite products in their respective abelian module categories.
The same also applies to the bounded versions of the conventional or absolute derived
categories and bounded versions of the homotopy categories.
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Propositions 1.6.1 and 1.6.2 provide the equivalences with the coderived category
Dco(A–mod) or the contraderived category Dctr(B–mod). Thus we have shown in all
the cases that the mentioned triangulated categories of complexes of A-modules are
equivalent to each other and the mentioned triangulated categories of complexes of
B-modules are equivalent to each other. It remains to construct the equivalences
connecting complexes of A-modules with complexes of B-modules.

Specifically, the equivalence Dco(A–mod) ' Dctr(B–mod) can be obtained in the
same way as in [16, Theorem 4.5], using the equivalence Dco(A–mod) ' Hot(A–modinj)
in order to construct the derived functor RHomA(D•,−) and the equivalence
Dctr(B–mod) ' Dabs(B–modflat) or Dctr(B–mod) ' Hot(B–modproj) in order to con-
struct the derived functor D•⊗L

B−. More generally, the equivalence D?(El2) ' D?(Fl2)
can be produced as a particular case of Theorem 1.4.5. �

1.7. Base change. The aim of this section and the next one is to formulate a gen-
eralization of the definitions and results of [16, Section 5] that would fit naturally in
our present context. Our exposition is informed by that in [2, Section 5].

Let A −→ R and B −→ S be two homomorphisms of associative rings. Let
E ⊂ A–mod be a full subcategory satisfying the condition (I), and let F ⊂ B–mod be
a full subcategory satisfying the condition (II). We denote by G = GE ⊂ R–mod the
full subcategory formed by all the left R-modules whose underlying left A-modules
belong to E, and by H = HF ⊂ S–mod the full subcategory formed by all the left
S-modules whose underlying left B-modules belong to F.

Lemma 1.7.1. (a) The full subcategory GE ⊂ R–mod satisfies the condition (I) if
and only if the underlying A-modules of all the injective left R-modules belong to E.

(b) The full subcategory HF ⊂ S–mod satisfies the condition (II) if and only if the
underlying B-modules of all the projective left S-modules belong to F. �

Assume further that the equivalent conditions of Lemma 1.7.1(a) and (b) hold,
and additionally that the full subcategory E ⊂ A–mod is closed under infinite direct
sums and the full subcategory F ⊂ B–mod is closed under infinite products. Then
we get two commutative diagrams of triangulated functors, where the vertical arrows
are Verdier quotient functors described in Section 0.9 of the Introduction, and the
horizontal arrows are the forgetful functors:

Dco(R–mod) Dco(A–mod)

D(GE) D(E)

D(R–mod) D(A–mod)

����

//

����

����

//

����

//

Dctr(S–mod) Dctr(B–mod)

D(HF) D(F)

D(S–mod) D(B–mod)

����

//

����

����

//

����

//
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We recall that a triangulated functor is called conservative if it reflects isomor-
phisms, or equivalently, takes nonzero objects to nonzero objects. For example,
the forgetful functors D(R–mod) −→ D(A–mod) and D(S–mod) −→ D(B–mod)
are conservative, while the forgetful functors Dco(R–mod) −→ Dco(A–mod) and
Dctr(S–mod) −→ Dctr(B–mod) are not, in general.

Lemma 1.7.2. The forgetful functors D(GE) −→ D(E) and D(HF) −→ D(F) are
conservative. �

One can say that a complex of left A-modules is E-pseudo-coacyclic if its image
under the Verdier quotient functor Dco(A–mod) −→ D(E) vanishes. All coacyclic
complexes are pseudo-coacyclic, and all pseudo-coacyclic complexes are acyclic.

Similarly, one can say that a complex of left B-modules is F-pseudo-contraacyclic
if its image under the Verdier quotient functor Dctr(B–mod) −→ D(F) vanishes.
All contraacyclic complexes are pseudo-contraacyclic, and all pseudo-contraacyclic
complexes are acyclic.

Lemma 1.7.3. (a) Let E ⊂ A–mod be a full subcategory satisfying the condition (I),
closed under infinite direct sums, and containing the underlying A-modules of injective
left R-modules. Then a complex of left R-modules is GE-pseudo-coacyclic if and only
if it is E-pseudo-coacyclic as a complex of left A-modules.

(b) Let F ⊂ B–mod be a full subcategory satisfying the condition (II), closed
under infinite products, and containing the underlying B-modules of projective left
S-modules. Then a complex of left S-modules is HF-pseudo-contraacyclic if and only
if it is F-pseudo-contraacyclic as a complex of left B-modules.

Proof. This is a restatement of Lemma 1.7.2. �

The terminology in the following definition follows that in [16, Section 5], where
“relative dualizing complexes” are discussed. In [2, Section 5], a related phenomenon
is called “base change”.

A relative pseudo-dualizing complex for a pair of associative ring homomorphisms
A −→ R and B −→ S is a set of data consisting of a pseudo-dualizing complex of
A-B-bimodules L•, a pseudo-dualizing complex of R-S-bimodules U •, and a mor-
phism of complexes of A-B-bimodules L• −→ U • satisfying the following condition:

(iv) the induced morphism R⊗L
A L

• −→ U • is an isomorphism in the derived cat-
egory of left R-modules D−(R–mod), and the induced morphism L•⊗L

B S −→
U • is an isomorphism in the derived category of right S-modules D−(mod–S).

Notice that the condition (iii) in the definition of a pseudo-dualizing complex in
Section 1.2 holds for the complex U • whenever it holds for the complex L• and the
above condition (iv) is satisfied. The following result, which is our version of [2,
Theorem 5.1], explains what happens with the condition (ii). We will assume that
the complex L• is concentrated in the cohomological degrees −d1 6 m 6 d2 and the
complex U • is concentrated in the cohomological degrees −t1 6 m 6 t2. Let L• op

denote the complex L• viewed as a complex of Bop-Aop-bimodules.
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Proposition 1.7.4. Let L• be a pseudo-dualizing complex of A-B-bimodules, U • be
a finite complex of R-S-bimodules, and L• −→ U • be a morphism of complexes of
A-B-bimodules satisfying the condition (iv). Then U • is a pseudo-dualizing complex
of R-S-bimodules if and only if there exists an integer l1 > d1 such that the right
A-module R belongs to the class Fl1(L

• op) ⊂ Aop–mod and the left B-module S belongs
to the class Fl1(L

•) ⊂ B–mod.

Proof. The key observation is that the natural isomorphism RHomR(U •, U •) '
RHomR(R ⊗L

A L•, U •) ' RHomA(L•, U •) ' RHomA(L•, L• ⊗L
B S) identifies

the homothety morphism Sop −→ RHomR(U •, U •) with the adjunction morphism
S −→ RHomA(L•, L•⊗L

BS). Similarly, the natural isomorphism RHomSop(U •, U •) '
RHomBop(L•, R⊗L

AL
•) identifies the homothety morphism R −→ RHomSop(U •, U •)

with the adjunction morphism R −→ RHomBop(L•, R ⊗L
A L

•). It remains to say
that one can take any integer l1 such that l1 > d1 and l1 > t1. �

The next proposition is our version of [2, Proposition 5.3].

Proposition 1.7.5. Let L• −→ U • be a relative pseudo-dualizing complex for a pair
of ring homomorphisms A −→ R and B −→ S. Let l1 be an integer such that l1 > d1

and l1 > t1. Then
(a) a left R-module belongs to the full subcategory El1(U

•) ⊂ R–mod if and only if
its underlying A-module belongs to the full subcategory El1(L

•) ⊂ A–mod;
(b) a left S-module belongs to the full subcategory Fl1(U

•) ⊂ S–mod if and only if
its underlying B-module belongs to the full subcategory Fl1(L

•) ⊂ B–mod.

Proof. The assertions follow from the commutative diagrams of the pairs of adjoint
functors and the forgetful functors

D(R–mod) D(S–mod)

D(A–mod) D(B–mod)

//
RHomR(U•,−)

�� ��

//
RHomA(L•,−)

D(R–mod) D(S–mod)

D(A–mod) D(B–mod)
�� ��

oo
U•⊗L

S−

oo
L•⊗L

B−

together with the compatibility of the adjunctions with the forgetful functors and
conservativity of the forgetful functors. �

Proposition 1.7.6. Let L• −→ U • be a relative pseudo-dualizing complex for a pair
of ring homomorphisms A −→ R and B −→ S, and let E ⊂ A–mod and F ⊂ B–mod
be a pair of full subcategories satisfying the conditions (I–IV) with respect to the
pseudo-dualizing complex L• with some parameters l1 and l2 such that l1 > d1, l1 > t1,
l2 > d2, and l2 > t2. Suppose that the underlying A-modules of all the injective
left R-modules belong to E and the underlying B-modules of all the projective left
S-modules belong to F. Then the pair of full subcategories GE ⊂ R–mod and HF ⊂
S–mod satisfies the conditions (I–IV) with respect to the pseudo-dualizing complex
U • with the same parameters l1 and l2.
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Proof. The conditions (I–II) hold by Lemma 1.7.1, and the conditions (III–IV) are
easy to check using the standard properties of the (co)resolution dimensions [13,
Corollary A.5.2]. �

Corollary 1.7.7. In the context and assumptions of Proposition 1.7.6, for any sym-
bol ? = b, +, −, ∅, abs+, abs−, co, ctr, or abs, there is a triangulated equiva-
lence D?(GE) ' D?(HF) provided by (appropriately defined) mutually inverse functors
RHomR(U •,−) and U • ⊗L

S −.
Here, in the case ? = co it is assumed that the full subcategories E ⊂ A–mod and

F ⊂ B–mod are closed under infinite direct sums, while in the case ? = ctr it is
assumed that these two full subcategories are closed under infinite products.

Proof. This is a particular case of Theorem 1.3.2. �

1.8. Relative dualizing complexes. Let A be an associative ring. The sfp-injective
dimension of an A-module is the minimal length of its coresolution by sfp-injective
A-modules. The sfp-injective dimension of a left A-module E is equal to the supre-
mum of all the integers n > 0 for which there exists a strongly finitely presented left
A-module M such that ExtnA(M,E) 6= 0. The sfp-flat dimension of an A-module is
the minimal length of its resolution by sfp-flat A-modules. The sfp-flat dimension of
a left A-module F is equal to the supremum of all the integers n > 0 for which there
exists a strongly finitely presented right A-module N such that TorAn (N,F ) 6= 0.

Lemma 1.8.1. The sfp-flat dimension of a right A-module G is equal to the
sfp-injective dimension of the left A-module HomZ(G,Q/Z). �

Let A −→ R and B −→ S be homomorphisms of associative rings.

Lemma 1.8.2. (a) The supremum of sfp-injective dimensions of the underlying left
A-modules of injective left R-modules is equal to the sfp-flat dimension of the right
A-module R.

(b) The supremum of sfp-flat dimensions of the underlying left B-modules of pro-
jective left S-modules is equal to the sfp-flat dimension of the left B-module S. �

Assume that all sfp-injective left A-modules have finite injective dimensions and
all sfp-flat left B-modules have finite projective dimensions, as in Section 1.6. Fix
an integer n > 0, and set E = A–modsfpin(n) ⊂ A–mod to be the full subcategory
of all left A-modules whose sfp-injective dimension does not exceed n. Similarly, set
F = B–modsfpfl(n) ⊂ B–mod to be the full subcategory of all left B-modules whose
sfp-flat dimension does not exceed n.

Proposition 1.8.3. (a) The embedding of exact/abelian categories E −→ A–mod
induces an equivalence of triangulated categories Dabs=∅(E) ' Dco(A–mod).

(b) The embedding of exact/abelian categories F −→ B–mod induces an equivalence
of triangulated categories Dabs=∅(F) ' Dctr(B–mod).

Proof. Follows from [11, Remark 2.1], Propositions 1.6.1–1.6.2, and [13, Proposi-
tion A.5.6] (cf. the proof of Corollary 1.6.6). �
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In other words, in the terminology of Section 1.7, one can say that the class
of E-pseudo-coacyclic complexes coincides with that of coacyclic complexes of left
A-modules, while the class of F-pseudo-contraacyclic complexes coincides with that
of contraacyclic complex of left B-modules.

The following definitions were given in the beginning of [16, Section 5]. The
R/A-semicoderived category of left R-modules Dsico

A (R–mod) is defined as the quo-
tient category of the homotopy category of complexes of left R-modules Hot(R–mod)
by its thick subcategory of complexes of R-modules that are coacyclic as complexes
of A-modules. Similarly, the S/B-semicontraderived category of left S-modules
Dsictr
B (S–mod) is defined as the quotient category of the homotopy category of

complexes of left S-modules Hot(S–mod) by its thick subcategory of complexes of
S-modules that are contraacyclic as complexes of B-modules.

As in Section 1.7, we denote by GE ⊂ R–mod the full subcategory of all left
R-modules whose underlying A-modules belong to E, and by HF ⊂ S–mod the full
subcategory of all left S-modules whose underlying B-modules belong to F. The next
proposition is our version of [16, Theorems 5.1 and 5.2].

Proposition 1.8.4. (a) Assume that all sfp-injective left A-modules have finite injec-
tive dimensions and the sfp-flat dimension of the right A-module R does not exceed n.
Then the embedding of exact/abelian categories GE −→ R–mod induces an equiva-
lence of triangulated categories D(GE) ' Dsico

A (R–mod).
(b) Assume that all sfp-flat left B-modules have finite projective dimensions and

the sfp-flat dimension of the left B-module S does not exceed n. Then the embedding
of exact/abelian categories HF −→ S–mod induces an equivalence of triangulated
categories D(HF) ' Dsictr

B (S–mod).

Proof. The assumptions of Lemma 1.7.3(a) or (b) hold by Lemma 1.8.2, so its con-
clusion is applicable; and it remains to recall Proposition 1.8.3. �

So, in the assumptions of Proposition 1.8.4, the R/A-semicoderived category
of left R-modules is a pseudo-coderived category of left R-modules and the
S/B-semicontraderived category of left S-modules is a pseudo-contraderived category
of left S-modules, in the sense of Section 0.9 of the Introduction.

A relative dualizing complex for a pair of associative ring homomorphisms A −→ R
and B −→ S is a relative pseudo-dualizing complex L• −→ U • in the sense of the
definition in Section 1.7 such that L• = D• is a dualizing complex of A-B-bimodules
in the sense of the definition in Section 1.6. In other words, the condition (i) of
Section 1.6 and the conditions (ii-iii) of Section 1.2 have to be satisfied for D•, the
condition (ii) of Section 1.2 has to be satisfied for U •, and the condition (iv) of
Section 1.7 has to be satisfied for the morphism D• −→ U •.

Notice that, in the assumption of finiteness of flat dimensions of the right A-module
R and the left B-module S, the condition (ii) for the complex U • follows from the
similar condition for the complex L• together with the condition (iv), by Proposi-
tion 1.7.4 and Remark 1.2.7.

The following corollary is our generalization of [16, Theorem 5.6].
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Corollary 1.8.5. Let A and B be associative rings such that all sfp-injective left
A-modules have finite injective dimensions and all sfp-flat left B-modules have finite
projective dimensions. Let A −→ R and B −→ S be associative ring homomorphisms
such that the ring R is a right A-module of finite flat dimension and the ring S is a
left B-module of finite flat dimension. Let D• −→ U • be a relative dualizing complex
for A −→ R and B −→ S. Then there is a triangulated equivalence Dsico

A (R–mod) '
Dsictr
B (S–mod) provided by mutually inverse functors RHomR(U •,−) and U • ⊗L

S −.

Proof. Combine Corollary 1.7.7 (for ? = ∅) with Proposition 1.8.4. �

2. Pairs of Coassociative Coalgebras

We refer to the classical book [27], the introductory section and appendix [11,
Section 0.2 and Appendix A], the memoir [12], the overview [14], the paper [19], and
the references therein for a general discussion of coassociative coalgebras over fields
and module objects (comodules and contramodules) over them.

2.1. Strongly quasi-finitely copresented comodules. Let k be a fixed ground
field and C be a coassociative coalgebra (with counit) over k. We denote by C–comod
and comod–C the abelian categories of left and right C-comodules. The abelian
category of left C-contramodules is denoted by C–contra.

For any two left C-comodules M and N, we denote by HomC(M,N) the k-vector
space of left C-comodule morphisms M −→ N. For any two left C-contramodules S
and T, we denote by HomC(S,T) the k-vector space of left C-contramodule morphisms
S −→ T. The coalgebra opposite to C is denoted by Cop; so a right C-comodule is
the same thing as a left Cop-comodule.

We recall that for any right C-comodule N and k-vector space V the vector space
Homk(N, V ) has a natural left C-contramodule structure [14, Sections 1.1–2]. We
refer to [19, Section 1], [14, Section 3.1], [12, Section 2.2], or [11, Sections 0.2.6
and 5.1.1–2] for the definition and discussion of the functor of contratensor product
N �C T of a right C-comodule N and a left C-contramodule T.

The construction of the cotensor product N �C M of a right C-comodule N and
a left C-comodule M goes back at least to the paper [8, Section 2]. The dual-
analogous construction involving contramodules is the vector space of cohomomor-
phisms CohomC(M,T) from a left C-comodule M to a left C-contramodule T. We refer
to [19, Section 1], [14, Sections 2.5–6], or [11, Sections 0.2.1, 0.2.4, 1.2.1, and 3.2.1]
for the definitions and discussion of these constructions.

Given a subcoalgebra B ⊂ C and a left C-comodule M, let BM ⊂ M denote the
maximal C-subcomodule in M whose C-comodule structure comes from a B-comodule
structure. The B-comodule BM can be computed as the full preimage of the subco-
module B⊗kM ⊂ C⊗kM under the coaction map M −→ C⊗kM, or as the cotensor
product B �C M [19, Section 1].
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Lemma 2.1.1. Let C be a coassociative coalgebra over k and M be a left C-comodule.
Then the following two conditions are equivalent:

• for any finite-dimensional subcoalgebra B ⊂ C, the k-vector space BM is
finite-dimensional;
• for any cosimple subcoalgebra A ⊂ C, the k-vector space AM is finite-

dimensional;
• for any finite-dimensional left C-comodule K, the k-vector space HomC(K,M)

is finite-dimensional.
• for any irreducible left C-comodule I, the k-vector space HomC(I,M) is finite-

dimensional.

Proof. The equivalence between the first two conditions follows from a dual form of
Nakayama’s lemma for finite-dimensional algebras. The rest of the equivalences are
easy. We refer to [27, Section 2] for the background material (in particular, one should
keep in mind that C is the union of its finite-dimensional subcoalgeras, all C-comodules
are the unions of their finite-dimensional subcomodules, and all finite-dimensional
C-comodules are comodules over finite-dimensional subcoagebras of C; so irreducible
left C-comodules correspond bijectively to cosimple subcoalgebras in C). �

We will say that a left C-comodule M is quasi-finitely cogenerated if it satisfies the
equivalent conditions of Lemma 2.1.1. (Such comodules were called “quasi-finite”
in [28].) Any finitely cogenerated C-comodule (in the sense of [28] or [19]) is quasi-
finitely cogenerated, while the cofree left C-comodule C ⊗k V cogenerated by an
infinite-dimensional k-vector space V is not quasi-finitely cogenerated when C 6= 0.

One can see from [19, Lemma 1.2(e)] that the classes of finitely cogenerated
and quasi-finitely cogenerated left C-comodules coincide if and only if the maxi-
mal cosemisimple subcoalgebra Css of the coalgebra C is finite-dimensional. Unlike
the finite cogeneratedness condition, the quasi-finite cogeneratedness condition on
comodules is Morita invariant, i. e., it is preserved by equivalences of the categories
of comodules C–comod ' D–comod over different coalgebras C and D [28].

Lemma 2.1.2. (a) The class of all quasi-finitely cogenerated left C-comodules is
closed under extensions and the passages to arbitrary subcomodules.

(b) Any quasi-finitely cogenerated C-comodule is a subcomodule of a quasi-finitely
cogenerated injective C-comodule. �

Proof. To prove part (a), notice that the functor M 7−→ BM is left exact for any
subcoalgebra B ⊂ C). In part (b), it suffices to say that the injective envelope of a
quasi-finitely cogenerated comodule is quasi-finitely cogenerated. �

A C-comodule M is said to be quasi-finitely copresented if it is isomorphic to the
kernel of a morphism of quasi-finitely cogenerated injective C-comodules. Any finitely
copresented C-comodule in the sense of [19, Section 1] is quasi-finitely copresented.
Any quasi-finitely copresented C-comodule is quasi-finitely cogenerated.

Lemma 2.1.3. (a) The kernel of a morphism from a quasi-finitely copresented
C-comodule to a quasi-finitely cogenerated one is quasi-finitely copresented.
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(b) The class of quasi-finitely copresented C-comodules is closed under extensions.
(c) The cokernel of an injective morphism from a quasi-finitely copresented

C-comodule to a quasi-finitely cogenerated one is quasi-finitely cogenerated.

Proof. Follows from Lemma 2.1.2 (cf. the proof of [19, Lemma 1.8(a)]). �

Given a subcoalgebra B ⊂ C and a left C-contramodule T, we denote by BT
the maximal quotient contramodule of T whose C-contramodule structure comes
from a B-contramodule structure. The B-contramodule BT can be computed as
the cokernel of the composition Homk(C/B,T) −→ T of the natural embedding
Homk(C/B,T) −→ Homk(C,T) with the contraaction map Homk(C,T) −→ T, or
as the space of cohomomorphisms BT = CohomC(B,T) [19, Section 1].

Lemma 2.1.4. Let C be a coassociative coalgebra over k and T be a left C-contra-
module. Then the following two conditions are equivalent:

• for any finite-dimensional subcoalgebra B ⊂ C, the k-vector space BT is finite-
dimensional;
• for any cosimple subcoalgebra A ⊂ C, the k-vector space AT is finite-

dimensional;
• for any finite-dimensional left C-contramodule K, the k-vector space

HomC(T,K) is finite-dimensional;
• for any irreducible left C-contramodule I, the k-vector space HomC(T, I) is

finite-dimensional.

Proof. The equivalence of the first two conditions follows from Nakayama’s lemma
for finite-dimensional algebras. The rest of the equivalences are only slightly more
complicated than in Lemma 2.1.1. We refer to [11, Appendix A] and [14, Section 1]
for the background material (in particular, one has to be careful in that not every
C-contramodule embeds into the projective limit of its finite-dimensional quotient
contramodules; nevertheless, all irreducible C-contramodules are finite-dimensional;
furthermore, not every finite-dimensional C-contramodule is a contramodule over
a finite-dimensional subcoalgebra in C, generally speaking; but every irreducible
C-contramodule is; so irreducible left C-contramodules still correspond bijectively
to cosimple subcoalgebras in C). �

We will say that a left C-contramodule T is quasi-finitely generated if it satisfies the
equivalent conditions of Lemma 2.1.4. According to [19, Lemma 1.5(a) and the proof
of Lemma 1.5(b)], any finitely generated C-contramodule is quasi-finitely generated,
while the free left C-contramodule Homk(C, V ) generated by an infinite-dimensional
vector space V is not quasi-finitely generated when C 6= 0.

One can see from [19, Lemma 1.5(c,e)] that the classes of finitely generated and
quasi-finitely generated left C-contramodules coincide if and only if the maximal
cosemisimple subcoalgebra Css of the coalgebra C is finite-dimensional. Unlike the fi-
nite generatedness condition, the quasi-finite generatedness condition on contramod-
ules is Morita invariant, i. e., it is preserved by equivalences of the categories of
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contramodules C–contra ' D–contra over different coalgebras C and D (see [11, Sec-
tion 7.5.3] for a discussion).

Lemma 2.1.5. (a) The class of quasi-finitely generated left C-contramodules is closed
under extensions and the passages to arbitrary quotient contramodules.

(b) Any quasi-finitely generated left C-contramodule is a quotient contramodule of
a quasi-finitely generated projective C-contramodule.

Proof. To prove part (a), notice that the functor T 7−→ BT is right exact for
any subcoalgebra B ⊂ C. The proof of part (b) is based on the arguments in
the first half of the proof of [11, Lemma A.3]. The key step is to construct for
any left Css-contramodule K a projective left C-contramodule P such that the left
Css-contramodule Css

P is isomorphic to K. Then one applies [19, Lemma A.2.1]. �

A C-contramodule T is said to be quasi-finitely presented if it is isomorphic to
the cokernel of a morphism of quasi-finitely presented projective C-contramodules.
Any finitely presented contramodule in the sense of [19, Section 1] is quasi-finitely
presented. Any quasi-finitely presented C-contramodule is quasi-finitely generated.

Lemma 2.1.6. (a) The cokernel of a morphism of from a quasi-finitely generated
C-contramodule to a quasi-finitely presented one is quasi-finitely presented.

(b) The class of quasi-finitely presented C-contramodules is closed under extensions.
(c) The kernel of a surjective morphism from a quasi-finitely generated C-contra-

module to a quasi-finitely presented one is quasi-finitely generated.

Proof. Follows from Lemma 2.1.5 (cf. [16, Lemma 1.1] and [19, Lemma 1.8(b)]). �

The following proposition is our version of [19, Proposition 1.9].

Proposition 2.1.7. (a) The functor N 7−→ N∗ = Homk(N, k) restricts to an
anti-equivalence between the additive category of quasi-finitely copresented right
C-comodules and the additive category of quasi-finitely presented left C-contramodules.

(b) For any right C-comodule M, any quasi-finitely cogenerated right C-comodule
N, and any k-vector space V , the natural k-linear map Homk(M, N ⊗k V ) −→
Homk(N

∗,Homk(M, V )) restricts to an isomorphism of the Hom spaces in the cate-
gories of right C-comodules and left C-contramodules

HomCop(M, N ⊗k V ) ' HomC(N∗,Homk(M, V )).

(c) For any right C-comodule M, any quasi-finitely cogenerated right C-comodule
N, and any k-vector space V , the natural k-linear map (M ⊗k N∗) ⊗k V −→ M ⊗k
Homk(N, V ) induces an isomorphism of the (contra)tensor product spaces

(M�C N
∗)⊗k V ' M�C Homk(N

∗, V ).

Proof. Part (b): for a right C-comodule M and a subcoalgebra B ⊂ C, we de-
note the maximal subcomodule of M whose C-comodule structure comes from a
B-comodule structure by MB. Then for any k-vector space V we have BHomk(M, V )
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= Homk(MB, V ). Since any right C-comodule M is the union of its subcomodules
MA over the finite-dimensional subcoalgebras A ⊂ C, it follows that

Homk(M, V ) = lim←−A

AHomk(M, V ).

Therefore,

HomC(N∗,Homk(M, V )) = lim←−A
HomC(N∗, AHomk(M, V ))

= lim←−A
HomC(A(N∗), AHomk(M, V )) = lim←−A

HomA((NA)∗,Homk(MA, V ))

' lim←−A
HomAop(MA, NA ⊗k V ) = HomCop(M, N ⊗k V )

because the right A-comodule NA is finite-dimensional.
To prove part (a), we notice from the computations above that the left C-contra-

module N∗ is quasi-finitely generated if and only if a right C-comodule N is quasi-
finitely cogenerated. Furthermore, substituting V = k into the assertion (b), we see
that the dualization functor N 7−→ N∗ : comod–C −→ C–contra is fully faithful on
the full subcategory of quasi-finitely cogenerated comodules in comod–C. It remains
to prove the essential surjectivity.

As the left C-contramodule J∗ is projective for any injective right C-comodule J,
the dualization functor takes quasi-finitely cogenerated injective right C-comodules to
quasi-finitely generated projective left C-contramodules. A projective left C-contra-
module P is uniquely determined, up to isomorphism, by the left Css-contramodule
Css
P, and all the quasi-finitely generated Css-contramodules belong to the image of

the dualization functor; therefore so do all the quasi-finitely generated projective
C-contramodules (cf. the proofs of Lemmas 2.1.2(b) and 2.1.5(b)).

Finally, any quasi-finitely presented C-contramodule is the cokernel of a morphism
of quasi-finitely generated projective C-contramodules, this morphism comes from a
morphism of quasi-finitely cogenerated injective C-comodules, the kernel of the latter
morphism is a quasi-finitely copresented C-comodule, and the dualization functor
takes the kernels to the cokernels.

Part (c): For any right C-comodule M and left C-contramodule T, one has M�CT =
(lim−→A

MA) �C T = lim−→A
(MA �C T) = lim−→A

(MA �A
AT), where the inductive limit is

taken over all the finite-dimensional subcoalgebras A ⊂ C. In particular,

M�C Homk(N, V ) = lim−→A
(MA �C Homk(NA, V ))

' lim−→A
((MA �C N

∗
A)⊗k V ) = (M�C N

∗)⊗k V,
because NA is finite-dimensional. �

A C-comodule is said to be strongly quasi-finitely copresented if it has an injective
coresolution consisting of quasi-finitely cogenerated injective C-comodules. Similarly
one could define “strongly quasi-finitely presented contramodules”; and the following
two lemmas have their obvious dual-analogous contramodule versions.

Lemma 2.1.8. Let 0 −→ K −→ L −→ M −→ 0 be a short exact sequence of
C-comodules. Then whenever two of the three comodules K, L, M are strongly quasi-
finitely copresented, so is the third one.
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Proof. Dual to the proof of Lemma 1.1.1. �

Abusing terminology, we will say that a bounded below complex of C-comodules
is strongly quasi-finitely copresented if it is quasi-isomorphic to a bounded below
complex of quasi-finitely cogenerated injective C-comodules. Clearly, the class of
all strongly quasi-finitely copresented complexes is closed under shifts and cones in
D+(C–comod).

Lemma 2.1.9. (a) Any bounded below complex of strongly quasi-finitely copresented
C-comodules is strongly quasi-finitely copresented.

(b) Let M• be a complex of C-comodules concentrated in the cohomological de-
grees > n, where n is a fixed integer. Then M• is strongly quasi-finitely copresented
if and only if is is quasi-isomorphic to a complex of strongly quasi-finitely copresented
C-comodules concentrated in the cohomological degrees > n.

(c) Let M• be a finite complex of C-comodules concentrated in the cohomological
degrees n1 6 m 6 n2. Then M• is strongly quasi-finitely copresented if and only if it is
quasi-isomorphic to a complex of C-comodules K• concentrated in the cohomological
degrees n1 6 m 6 n2 such that the C-comodules Km are quasi-finitely cogenerated and
injective for all n1 6 m 6 n2− 1, while the C-comodule Kn2 is strongly quasi-finitely
copresented. �

Lemmas 2.1.8–2.1.9 are very similar to the respective results from Section 1.1. The
following examples of pseudo-derived categories of comodules and contramodules,
however, are quite different from Examples 1.1.4–1.1.5 in that the finiteness conditions
(like the ones discussed above in this section) play essentially no role in them.

Given a left C-comodule M and a right C-comodule N, the k-vector spaces
CotorCi (N,M), i = 0, −1, −2, . . . are defined as the right derived functors of the left
exact functor of cotensor product N�C M, constructed by replacing any one or both
of the comodules N and M by its injective coresolution, taking the cotensor product
and computing the cohomology [11, Sections 0.2.2 and 1.2.2], [12, Section 4.7].

Examples 2.1.10. (1) Let C be a coassociative coalgebra and S be a class of right
C-comodules. Denote by E ⊂ A = C–comod the full subcategory formed by all the left
C-comodules E such that CotorCi (S,E) = 0 for all S ∈ S and all i < 0. Then the full
subcategory E ⊂ C–comod is a coresolving subcategory closed under infinite direct
sums. Thus the derived category D(E) of the exact category E is a pseudo-coderived
category of the abelian category C–comod, that is an intermediate quotient category
between the coderived category Dco(C–comod) and the derived category D(C–comod),
as explained in Section 0.9 of the Introduction.

(2) In particular, if S = ∅, then one has E = C–comod. On the other hand, if S
is the class of all right C-comodules, then E = C–comodinj is the full subcategory of
all injective left C-comodules. In fact, it suffices to take S to be the set of all finite-
dimensional right C-comodules, or just irreducible right C-comodules, to force E =
C–comodinj [14, Lemma 3.1(a)]. In this case, the derived category D(E) = Hot(E) of
the (split) exact category E is equivalent to the coderived category of left C-comodules
Dco(C–comod) [11, Theorem 5.4(a) or 5.5(a)], [12, Theorem 4.4(c)].
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Given a left C-comodule M and a left C-contramodule T, the k-vector spaces
CoextiC(M,T), i = 0, −1, −2, . . . are defined as the left derived functors of the
right exact functor of cohomomorphisms CohomC(M,T), constructed by replacing
either the comodule argument M by its injective coresolution, or the contramodule
argument T by its projective resolution, or both, taking the CohomC and computing
the homology [11, Sections 0.2.5 and 3.2.2], [12, Section 4.7].

Examples 2.1.11. (1) Let D be a coassociative coalgebra over k and S be a class of
left D-comodules. Denote by F ⊂ B = D–contra the full subcategory formed by all the
left D-contramodules F such that CoextiD(S,F) = 0 for all S ∈ S and all i < 0. Then
the full subcategory F ⊂ D–contra is a resolving subcategory closed under infinite
products. Thus the derived category D(F) of the exact category F is a pseudo-
contraderived category of the abelian category D–contra, that is an intermediate
quotient category between the contraderived category Dctr(D–contra) and the derived
category D(D–contra), as explained in Section 0.9.

(2) In particular, if S = ∅, then one has F = D–contra. On the other hand, if
S is the class of all left D-comodules, then F = D–contraproj is the full subcategory
of all projective left D-contramodules [14, Lemma 3.1(b)]. In fact, it suffices to
take S to be the set of all finite-dimensional left D-comodules, or just irreducible
left D-comodules, to force F = D–contraproj [11, Lemma A.3]. In this case, the
derived category D(F) = Hot(F) of the (split) exact category F is equivalent to the
contraderived category of left D-contramodules Dctr(D–contra) [11, Theorem 5.4(b)
or 5.5(b)], [12, Theorem 4.4(d)], [13, Corollary A.6.2].

Looking on Examples 2.1.10(1)–2.1.11(1), it appears that coresolving subcategories
closed under infinite direct sums may be more common in comodules than in modules,
and resolving subcategories closed under infinite products may be more common in
contramodules than in modules.

2.2. Auslander and Bass classes. We recall the definition of a pseudo-dualizing
complex of bicomodules from Section 0.7. Let C and D be coassociative coalgebras
over a field k.

A pseudo-dualizing complex L• for the coalgebras C and D is a finite complex of
C-D-bicomodules satisfying the following two condition:

(ii) the homothety maps C∗ −→ HomDb(comod–D)(L
•,L•[∗]) and D∗op −→

HomDb(C–comod)(L
•,L•[∗]) are isomorphisms of graded rings;

(iii) the complex L• is strongly quasi-finitely copresented as a complex of left
C-comodules and as a complex of right D-comodules.

Here the condition (iii) refers to the definition of a strongly quasi-finitely copresented
complex of comodules in Section 2.1. The complex L• is viewed as an object of the
bounded derived category of C-D-bicomodules Db(C–comod–D).

Given a C-D-bicomodule K, the functor of contratensor product K�D− : D–contra
−→ C–comod is left adjoint to the functor of comodule homomorphisms HomC(K,−) :
C–comod −→ D–contra. Hence, in particular, the functor of contratensor product of
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complexes L• �D − : Hot(D–contra) −→ Hot(C–comod) is left adjoint to the functor
HomC(L•,−) : Hot(C–comod) −→ Hot(D–contra).

We will use the existence theorem of homotopy injective resolutions of complexes
of comodules and homotopy projective resolutions of complexes of contramod-
ules [12, Theorem 2.4] in order to work with the conventional unbounded derived
categories of comodules and contramodules D(C–comod) and D(D–contra). Using
the homotopy projective and homotopy injective resolutions of the second argu-
ments, one constructs the derived functors L• �L

D − : D(D–contra) −→ D(C–comod)
and RHomC(L•,−) : D(C–comod) −→ D(D–contra). For the same reasons as in
Section 1.2, the left derived functor L• �L

D − is left adjoint to the right derived
functor RHomC(L•,−).

As in Section 1.2, we will use the following simplified notation. Given two
complexes of left C-comodules M• and N•, we denote by ExtnC(M•,N•) the vector
spaces HnRHomC(M•,N•) ' HomD(C–comod)(M

•,N•) of cohomology of the complex
RHomC(M•,N•) = HomC(M•, J•), where N• −→ J• is a quasi-isomorphism of com-
plexes of left C-comodules and J• is a homotopy injective complex of left C-comodules.
Given a complex of right D-comodules N• and a complex of left D-contramodules
T•, we denote by CtrtorDn (N•,T•) the vector spaces H−n(N• �L

D T•) of cohomology
of the complex N• �L

D P• = N• �D P•, where P• −→ T• is a quasi-isomorphism of
complexes of left D-contramodules and P• is a homotopy projective complex of left
D-contramodules.

Suppose that the finite complex L• is situated in the cohomological degrees −d1 6
m 6 d2. Then one has ExtnC(L•, J) = 0 for all n > d1 and all injective left
C-comodules J. Similarly, one has CtrtorDn (L•,P) = 0 for all n > d1 and all projec-
tive left D-contramodules P. Choose an integer l1 > d1 and consider the following
full subcategories in the abelian categories of left C-comodules and D-contramodules:

• El1 = El1(L
•) ⊂ C–comod is the full subcategory consisting of all the

C-comodules E such that ExtnC(L•,E) = 0 for all n > l1 and the adjunction
morphism L• �L

D RHomC(L•,E) −→ E is an isomorphism in D−(C–comod);
• Fl1 = Fl1(L

•) ⊂ D–contra is the full subcategory consisting of all the
D-contramodules F such that CtrtorDn (L•,F) = 0 for all n > l1 and the
adjunction morphism F −→ RHomC(L•, L• �L

D F) is an isomorphism in
D+(D–contra).

Clearly, for any l′′1 > l′1 > d1, one has El′1 ⊂ El′′1 ⊂ C–comod and Fl′1 ⊂ Fl′′1 ⊂ D–contra.
The category Fl1 can be called the Auslander class of contramodules corresponding to
a pseudo-dualizing complex L•, while the category El1 is the Bass class of comodules.

Lemma 2.2.1. (a) The full subcategory El1 ⊂ C–comod is closed under the cokernels
of injective morphisms, extensions, and direct summands.

(b) The full subcategory Fl1 ⊂ D–contra is closed under the kernels of surjective
morphisms, extensions, and direct summands. �
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The formulation of the next lemma is similar to that of Lemma 1.2.2, but the
proof is quite different. Rather, it resembles the related arguments in the proofs
of [19, Theorem 2.6] and [15, Theorem 4.9].

Lemma 2.2.2. (a) The full subcategory El1 ⊂ C–comod contains all the injective left
C-comodules.

(b) The full subcategory Fl1 ⊂ D–contra contains all the projective left D-contra-
modules.

Proof. Part (a): we have to check that for any injective left C-comodule E the ad-
junction morphism L• �L

D RHomC(L•,E) = L• �L
D HomC(L•,E) −→ E is a quasi-

isomorphism. It suffices to consider the case of a cofree left C-comodule E = C⊗k V ,
where V is a k-vector space. Then one has HomC(L•,E) ' Homk(L

•, V ).
According to the condition (iii), there exists a bounded below complex of quasi-

finitely cogenerated injective right D-comodules I• endowed with a quasi-isomorphism
of complexes of right D-comodules L• −→ I•. Then we have a quasi-isomorphism of
complexes of left D-contramodules Homk(I

•, V ) −→ Homk(L
•, V ), and Homk(I

•, V )
is a bounded above complex of projective left D-contramodules. Hence L• �L

D

Homk(L
•, V ) = L• �D Homk(I

•, V ), and it remains to show that the morphism of
complexes of left C-comodules

(13) L• �D Homk(I
•, V ) −−→ C⊗k V

is a quasi-isomorphism. The morphism (13) is constructed in terms of the mor-
phism of complexes of right D-comodules L• −→ I• and the left C-coaction in the
complex L•.

In particular, substituting V = k into (13), we have a morphism of complexes of
left C-comodules

(14) L• �D I•∗ −−→ C.

Passing to the dual vector spaces in (14), we obtain a map C∗ −→ HomD(I•∗,L•∗),
which is equal to the composition of the homothety map C∗ −→ HomD(L•, I•) =
RHomD(L•,L•) with the dualization map HomD(L•, I•) −→ HomD(I•∗,L•∗).

As the homothety map is a quasi-isomorphism by the condition (ii) and the dual-
ization map is an isomorphism of complexes by Proposition 2.1.7(b) (because I• is a
complex of quasi-finitely cogenerated right D-comodules, while L• is a finite complex),
it follows that passing to the dual vector spaces in (14) produces a quasi-isomorphism.
Hence the map (14) is a quasi-isomorphism, too. Finally, by Proposition 2.1.7(c) the
natural map (L•�DI

•∗)⊗kV −→ L•�DHomk(I
•, V ) is an isomorphism of complexes.

Therefore, the map (13) is also a quasi-isomorphism.
Part (b): we have to check that for any projective left D-contramodule F the

adjunction morphism F −→ RHomC(L•, L• �L
D F) = RHomC(L•, L• �D F) is a

quasi-isomorphism. It suffices to consider the case of a free left D-contramodule
F = Homk(D, V ), where V is a k-vector space. Then one has L• �D Homk(D, V ) '
L• ⊗k V .
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According to the condition (iii), there exists a bounded below complex of quasi-
finitely cogenerated injective left C-comodules J• endowed with a quasi-isomorphism
of complexes of left C-comodules L• −→ J•. Then RHomC(L•, L• ⊗k V ) =
HomC(L•, J• ⊗k V ), and it remains to show that the morphism of complexes of left
D-contramodules

(15) Homk(D, V ) −−→ HomC(L•, J• ⊗k V )

is a quasi-isomorphism. The morphism (13) is constructed in terms of the mor-
phism of complexes of left C-comodules L• −→ J• and the right D-coaction in the
complex L•.

In the same way as in the proof of part (a), one deduces from the condition (ii) using
Proposition 2.1.7(b) that the natural morphism of complexes of right D-comodules

(16) L• �Cop J•∗ −−→ D

is a quasi-isomorphism. Applying the functor Homk(−, V ) to (16), we see that the
natural map

(17) Homk(D, V ) −−→ Homk(L
• �Cop J•∗, V ) ' HomCop

(J•∗,Homk(L
•, V ))

is a quasi-isomorphism, too. It remains to use Proposition 2.1.7(b) again in order to
identify the right-hand sides of (15) and (17). �

3. Ideals in Commutative Rings

Appendix. Derived Functors of Finite Homological Dimension II

The aim of this appendix is to work out a generalization of the constructions of [15,
Appendix B] that is needed for the purposes of the present paper. We use an idea
borrowed from [4, Appendix A] in order to simplify and clarify the exposition.

A.1. Posing the problem. First we need to recall some notation from [15]. Given
an additive category A, we denote by C+(A) the category of bounded below complexes
in A, viewed either as a DG-category (with complexes of morphisms), or simply
as an additive category, with closed morphisms of degree 0. When A is an exact
category, the full subcategory C>0(A) ⊂ C+(A) of nonnegatively cohomologically
graded complexes in A and closed morphisms of degree 0 between them has a natural
exact category structure, with termwise exact short exact sequences of complexes.

Let E be an exact category and J ⊂ E be a coresolving subcategory (in the sense of
Section 0.9), endowed with the exact category structure inherited from E. As it was
pointed out in [15], a closed morphism in C+(J) is a quasi-isomorphism of complexes
in J if and only if it is a quasi-isomorphism of complexes in E. A short sequence in
C>0(J) is exact in C>0(J) if and only if it is exact in C>0(E).
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Modifying slightly the notation in [15], we denote by EC
>0(J) the full subcategory

in the exact category C>0(J) consisting of all the complexes 0 −→ J0 −→ J1 −→
J2 −→ · · · in J for which there exists an object E ∈ E together with a morphism
E −→ J0 such that the sequence 0 −→ E −→ J0 −→ J1 −→ · · · is exact in E. By
the definition, one has EC

>0(J) = C>0(J) ∩ EC
>0(E) ⊂ C>0(E). The full subcategory

EC
>0(J) is closed under extensions and the cokernels of admissible monomorphisms

in C>0(J); so it inherits an exact category structure.

Let B be another exact category and F ⊂ B be a resolving subcategory. We will
suppose that the additive category B contains the images of idempotent endomor-
phisms of its objects. Let −l2 6 l1 be two integers. Denote by C>−l2(B) the exact
category C>0(B)[l2] ⊂ C+(B) of complexes in B concentrated in the cohomological
degrees > −l2, and by C>−l2(B)6l1 ⊂ C>−l2(B) the full subcategory consisting of all
complexes 0 −→ B−l2 −→ · · · −→ Bl1 −→ · · · such that the sequence Bl1 −→
Bl1+1 −→ Bl1+2 −→ · · · is exact in B. Furthermore, let C>−l2F (B)6l1 ⊂ C>−l2(B)6l1

be the full subcategory of all complexes that are isomorphic in the derived category
D(B) to complexes of the form 0 −→ F−l2 −→ · · · −→ F l1 −→ 0, with the terms
belonging to F and concentrated in the cohomological degrees −l2 6 m 6 l1.

For example, one has C>0(B)60 = BC
>0(B). The full subcategory C>−l2(B)6l1

is closed under extensions and the cokernels of admissible monomorphisms in
the exact category C>−l2(B), while (essentially by [25, Proposition 2.3(2)] or [13,
Lemma A.5.4(a-b)]) the full subcategory C>−l2F (B)6l1 is closed under extensions
and the kernels of admissible epimorphisms in C>−l2(B)6l1 . So the full subcategory
C>−l2F (B)6l1 inherits an exact category structure from C>−l2(B).

Suppose that we are given a DG-functor Ψ: C+(J) −→ C+(B) taking acyclic com-
plexes in the exact category J to acyclic complexes in the exact category B. Suppose
further that the restriction of Ψ to the subcategory EC

>0(J) ⊂ C+(J) is an exact
functor between exact categories

(18) Ψ: EC
>0(J) −−→ C>−l2F (B)6l1 .

Our aim is to construct the right derived functor

(19) RΨ: D?(E) −−→ D?(F)

acting between any bounded or unbounded, conventional or absolute derived cate-
gories D? with the symbols ? = b, +, −, ∅, abs+, abs−, or abs.

Under certain conditions, one can also have the derived functor RΨ acting between
the coderived or contraderived categories, ? = co or ctr, of the exact categories E
and F. When the exact categories E and B have exact functors of infinite product,
the full subcategories J ⊂ E and F ⊂ B are closed under infinite products, and the
functor Ψ preserves infinite products, there will be the derived functor RΨ acting
between the contraderived categories, RΨ: Dctr(E) −→ Dctr(F).

When the exact categories E and B have exact functors of infinite direct sum,
the full subcategory F ⊂ B is closed under infinite direct sums, and for any family of
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complexes J•
α ∈ C>0(J) and a complex I• ∈ C>0(J) endowed with a quasi-isomorphism⊕

α J
•
α −→ I• of complexes in the exact category E, the induced morphism⊕

α
Ψ(J•

α) −−→ Ψ(I•)

is a quasi-isomorphism of complexes in the exact category B, there will be the derived
functor RΨ acting between the coderived categories, RΨ: Dco(E) −→ Dco(F).

The construction of the derived functor RΨ in [15, Appendix B] is the particular
case of the construction below corresponding to the situation with F = B.

A.2. The construction of derived functor. The following construction of the
derived functor (19) is based on a version of the result of [4, Proposition A.3].

Since the DG-functor Ψ: C+(J) −→ C+(B) preserves quasi-isomorphisms, it in-
duces a triangulated functor

Ψ: D+(J) −−→ D+(B).

Taking into account the triangulated equivalence D+(J) ' D+(E) (provided by the
dual version of [13, Proposition A.3.1(a)]), we obtain the derived functor

RΨ: D+(E) −−→ D+(B).

Now our assumptions on Ψ imply that the functor RΨ takes the full subcategory
Db(E) ⊂ D+(E) into the full subcategory Db(F) ⊂ Db(B) ⊂ D+(B); hence the trian-
gulated functor

(20) RΨ: Db(E) −−→ Db(F).

For any exact category A, we denote by C(A) the exact category of unbounded
complexes in A, with termwise exact short exact sequences of complexes. In order to
construct the derived functor RΨ for the derived categories with the symbols other
than ? = b, we are going to substitute into (20) the exact category C(E) in place of
E and the exact category C(F) in place of F.

For any category Γ and DG-category DG, there is a DG-category whose objects
are all the functors Γ −→ DG taking morphisms in Γ to closed morphisms of de-
gree 0 in DG, and whose complexes of morphisms are constructed as the complexes
of morphisms of functors. We denote this DG-category by DGΓ. So diagrams of
any fixed shape in a given DG-category form a DG-category. Given a DG-functor
F : ′DG −→ ′′DG, there is the induced DG-functor between the categories of diagrams
F Γ : ′DGΓ −→ ′′DGΓ. In particular, the DG-category of complexes C(DG) in a given
DG-category DG can be constructed a full DG-subcategory of the DG-category of
diagrams of the corresponding shape in DG.

Applying this construction to the DG-functor Ψ and restricting to the full
DG-subcategories of uniformly bounded bicomplexes, we obtain a DG-functor

ΨC : C+(C(J)) −−→ C+(C(B)).

Here the categories of unbounded complexes C(J) and C(B) are simply viewed as
additive/exact categories of complexes and closed morphisms of degree 0 between
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them. The DG-structures come from the differentials raising the degree in which the
bicomplexes are bounded below.

The functor ΨC takes acyclic complexes in the exact category C(J) to acyclic com-
plexes in the exact category C(B). In view of the standard properties of the res-
olution dimension [13, Corollary A.5.2], the functor ΨC takes the full subcategory

C(E)C
>0(C(J)) ⊂ C+(C(J)) into the full subcategory C>−l2C(F) (C(B))6l1 ⊂ C+(C(B)),

ΨC : C(E)C
>0(C(J)) −−→ C>−l2C(F) (C(B))6l1 .

Finally, the functor ΨC is exact in restriction to the exact category C(E)C
>0(C(J)),

since the functor Ψ is exact in restriction to the exact category EC
>0(J).

Applying the construction of the derived functor (20) to the DG-functor ΨC in
place of Ψ, we obtain a triangulated functor

(21) RΨC : Db(C(E)) −−→ Db(C(F)).

Similarly one can construct the derived functors RΨC60 : Db(C60(E)) −→ Db(C60(F))
and RΨC>0 : Db(C>0(E)) −→ Db(C>0(F)) acting between the bounded derived cat-
egories of the exact categories of nonpositively or nonnegatively cohomologically
graded complexes. Shifting and passing to the direct limits of fully faithful em-
beddings, one can obtain the derived functors RΨC− : Db(C−(E)) −→ Db(C−(F)) and
RΨC+ : Db(C+(E)) −→ Db(C−(F)) acting between the bounded derived categories of
the exact categories of bounded above or bounded below complexes, etc.

In order to pass from (21) to (19) with ? = abs, we will apply the following
version of [4, Proposition A.3(2)]. Clearly, for any exact category A the totalization
of bounded complexes of complexes in A is a triangulated functor

(22) Db(C(A)) −−→ Dabs(A).

Proposition A.1. For any exact category A, the totalization functor (22) is a
Verdier quotient functor. Its kernel is the thick subcategory generated by the con-
tractible complexes in A, viewed as objects of C(A).

Proof. Denote by Aspl the additive category A endowed with the split exact category
structure (i. e., all the short exact sequences are split). Following [4], one first checks
the assertion of proposition for the exact category Aspl.

In this case, C(Aspl) is a Frobenius exact category whose projective-injective objects
are the contractible complexes, and Dabs(Aspl) = Hot(Aspl) is the stable category of
the Frobenius exact category C(Aspl). The quotient category of the bounded derived
category Db(C(Aspl)) by the bounded homotopy category of complexes of projective-
injective objects in C(Aspl) is just another construction of the stable category of a
Frobenius exact category, and the totalization functor is the inverse equivalence to
the comparison functor between the two constructions of the stable category.

Then, in order to pass from the functor (22) for the exact category Aspl to the
similar functor for the exact category A, one takes the quotient category by the acyclic
bounded complexes of complexes on the left-hand side, transforming Db(C(Aspl)) into
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Db(C(A)), and the quotient category by the totalizations of such bicomplexes on the
right-hand side, transforming Hot(A) into Dabs(A). �

It remains to notice that the contractible complexes in A are the direct summands
of the cones of identity endomorphisms of complexes in A, and the functor (21)
obviously takes the cones of identity endomorphisms of complexes in E (viewed as
objects of C(E)) to bicomplexes whose totalizations are contractible complexes in F.
This provides the desired derived functor (19) for ? = abs.

In order to pass from (21) to (19) with ? = ∅, the following corollary of Proposi-
tion A.1 can be applied. Consider the totalization functor

(23) Db(C(A)) −−→ D(A).

Corollary A.2. For any exact category A, the totalization functor (23) is a Verdier
quotient functor. Its kernel is the thick subcategory generated by the acyclic complexes
in A, viewed as objects of C(A). �

Using the condition that the functor (18) takes short exact sequences to short
exact sequences together with [15, Lemma B.2(e)], one shows that the functor (21)
takes acyclic complexes in E (viewed as objects of C(E)) to bicomplexes with acyclic
totalizations. This provides the derived functor (19) for ? = ∅.

To construct the derived functors RΨ acting between the bounded above and
bounded below versions of the conventional and absolute derived categories (with
? = +, −, abs+, or abs−), one can notice that the functors RΨ for ? = ∅
or abs take bounded above/below complexes to (objects representable by) bounded
above/below complexes, and use the fact that the embedding functors from the
bounded above/below conventional/absolute derived categories into the unbounded
ones are fully faithful [13, Lemma A.1.1]. Alternatively, one can repeat the above
arguments with the categories of unbounded complexes C(A) replaced with the
bounded above/below ones C−(A) or C+(A). The derived functor RΨ with ? = b
constructed in such a way agrees with the functor (20).

To construct the derived functor RΨ acting between the coderived or contraderived
categories (under the respective assumptions in Section A.1), one considers the de-
rived functor RΨ for ? = abs, and checks that the kernel of the composition C(E) −→
Dabs(E) −→ Dabs(F) −→ Dco(F) or C(E) −→ Dabs(E) −→ Dabs(F) −→ Dctr(F) is closed
under the infinite direct sums or infinite products, respectively. The facts that the
kernels of the additive functors C(F) −→ Dco/ctr(F) are closed under the infinite di-
rect sums/products and the total complex of a finite acyclic complex of unbounded
complexes in F is absolutely acyclic need to be used.

A.3. The dual setting. The notation C60(B) ⊂ C−(B) for an additive or exact
category B has the similar or dual meaning to the one in Section A.1.

Let F be an exact category and P ⊂ F be a resolving subcategory, endowed with
the inherited exact category structure. A closed morphism in C−(P) is a quasi-
isomorphism of complexes in P if and only if it is a quasi-isomorphism of complexes
in F. A short sequence in C60(P) is exact in C60(P) if and only if it is exact in C60(F).
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Following the notation in Section A.1, denote by FC
60(P) the full subcategory in

the exact category C60(P) consisting of all the complexes · · · −→ P−2 −→ P−1 −→
P 0 −→ 0 in P for which there exists an object F ∈ F together with a morphism
P 0 −→ F such that the sequence · · · −→ P−1 −→ P 0 −→ F −→ 0 is exact in F. By
the definition, one has FC

60(P) = C60(P) ∩ FC
60(F) ⊂ C60(F). The full subcategory

FC
60(P) is closed under extensions and the kernels of admissible epimorphisms in

C60(P); so it inherits an exact category structure.
Let A be another exact category and E ⊂ A be a coresolving subcategory. Sup-

pose that the additive category A contains the images of idempotent endomorphisms
of its objects. Let −l1 6 l2 be two integers. Denote by C6l2(A) the exact cat-
egory C60(A)[−l2] ⊂ C−(A) of complexes in A concentrated in the cohomological
degrees 6 l2, and by C6l2(A)>−l1 ⊂ C6l2(A) the full subcategory consisting of all com-
plexes · · · −→ A−l1 −→ · · · −→ Al2 −→ 0 such that the sequence · · · −→ A−l1−2 −→
A−l1−1 −→ A−l1 is exact in A. Furthermore, let C6l2E (A)>−l1 ⊂ C6l2(A)>−l1 be the
full subcategory of all complexes that are isomorphic in the derived category D(A) to
complexes of the form 0 −→ E−l1 −→ · · · −→ El2 −→ 0, with the terms belonging
to E and concentrated in the cohomological degrees −l1 6 m 6 l2.

For example, one has C60(A)>0 = AC
60(A). The full subcategory C6l2(A)>−l1 is

closed under extensions and the kernels of admissible epimorphisms in the exact
category C>l2(A), while the full subcategory C6l2E (A)>−l1 is closed under extension and
the cokernels of admissible monomorphisms in C6l2(A)>−l1 . So the full subcategory
C6l2E (A)>−l1 inherits an exact category structure from C>l2(A).

Suppose that we are given a DG-functor Φ: C−(P) −→ C−(A) taking acyclic com-
plexes in the exact category P to acyclic complexes in the exact category A. Suppose
further that the restriction of Φ to the subcategory FC

60(P) ⊂ C−(P) is an exact
functor between exact categories

(24) FC
60(P) −−→ C6l2E (A)>−l1 .

Then the construction dual to that in Section A.2 provides the left derived functor

(25) LΦ: D?(F) −→ D?(E)

acting between any bounded or unbounded, conventional or absolute derived cate-
gories D? with the symbols ? = b, +, −, ∅, abs+, abs−, or abs.

Under certain conditions, one can also have the derived functor LΦ acting between
the coderived or contraderived categories. When the exact categories F and A have
exact functors of infinite direct sum, the full subcategories P ⊂ F and E ⊂ A are
closed under infinite direct sums, and the functor Φ preserves infinite direct sums,
there is the derived functor LΦ: Dco(F) −→ Dco(E).

When the exact categories F and A have exact functors of infinite product, the full
subcategory E ⊂ A is closed under infinite products, and for any family of complexes
P •
α ∈ C60(P) and a complex Q• ∈ C60(P) endowed with a quasi-isomorphism Q• −→∏
α P

•
α of complexes in the exact category F, the induced morphism

Φ(Q•) −−→
∏

α
Φ(P •

α)
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is a quasi-isomorphism of complexes in the exact category A, there is the derived
functor LΦ: Dctr(F) −→ Dctr(E).

Let us spell out the major steps of the construction of the derived functor (25).
Since the DG-functor Φ: C−(P) −→ C−(A) preserves quasi-isomorphisms, it induces
a triangulated functor Φ: D−(P) −→ D−(A). Taking into account the triangulated
equivalence D−(P) ' D−(F) provided by [13, Proposition A.3.1(a)], we obtain the
derived functor LΦ: D−(F) −→ D−(A). Our assumptions on Φ imply that this functor
LΦ takes the full subcategory Db(F) ⊂ D−(F) into the full subcategory Db(E) ⊂
Db(A) ⊂ D−(A); hence the triangulated functor

(26) LΦ: Db(F) −→ Db(E).

Passing from the DG-functor Φ: C−(P) −→ C−(A) to the induced DG-functor
between the DG-categories of unbounded complexes in the given DG-categories, as
explained in Section A.2, and restricting to the full DG-subcategories of uniformly
bounded bicomplexes, one obtains the DG-functor

ΦC : C−(C(P)) −−→ C−(C(A)).

The functor ΦC takes acyclic complexes in the exact category C(P) to acyclic com-
plexes in the exact category C(A). It also takes the full subcategory C(F)C

60(C(P)) ⊂
C−(C(P)) into the full subcategory C6l2C(E)(C(A))>−l1 ⊂ C−(C(A)). So we can apply

the construction of the derived functor (26) to the DG-functor ΦC in place of Φ, and
produce a triangulated functor

(27) LΦC : Db(C(F)) −→ Db(C(E)).

Using Proposition A.1 and Corollary A.2, one shows that the triangulated func-
tor (27) descends to a triangulated functor (25) between the absolute or conventional
derived categories, ? = abs or ∅. The cases of bounded above or below absolute or
conventional derived categories, ? = +, −, abs+, or abs− can be treated as explained
in Section A.2. Under the respective assumptions, one can also descend from the
absolute derived categories to the coderived or contraderived categories, producing
the derived functor (25) for ? = co or ctr.

A.4. Deriving adjoint functors. Let A and B be exact categories containing the
images of idempotent endomorphisms of its objects, let J ⊂ E ⊂ A be coresolving
subcategories in A, and let P ⊂ F ⊂ B be resolving subcategories in B.

Let Ψ: C+(J) −→ C+(B) be a DG-functor satisfying the conditions of Section A.1,
and let Φ: C−(P) −→ C−(A) be a DG-functor satisfying the conditions of Section A.3.
Suppose that the DG-functors Φ and Ψ are partially adjoint, in the sense that for
any two complexes J• ∈ C+(J) and P • ∈ C−(P) there is a natural isomorphism of
complexes of abelian groups

(28) HomA(Φ(P •), J•) ' HomB(P •,Ψ(J•)),

where HomA and HomB denote the complexes of morphisms in the DG-categories of
unbounded complexes C(A) and C(B).
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Our aim is to show that the triangulated functor LΦ (25) is left adjoint to the
triangulated functor RΦ (19), for any symbol ? = b, +, −, ∅, abs+, abs−, or abs.
When the functors LΦ and RΨ acting between the categories Dco or Dctr are defined
(i. e., the related conditions in Sections A.1 and A.3 are satisfied), the former of them
is also left adjoint to the latter one.

Our first step is the following lemma.

Lemma A.3. In the assumptions above, the induced triangulated functors Φ: D−(P)
−→ D−(A) and Ψ: D+(J) −→ D+(B) are partially adjoint, in the sense that for any
complexes J• ∈ C+(J) and P • ∈ C−(P) there is a natural isomorphism of abelian
groups of morphisms in the unbounded derived categories

HomD(A)(Φ(P •), J•) ' HomD(B)(P
•,Ψ(J•)).

Proof. Passing to the cohomology groups in the DG-adjunction isomorphism (28),
one obtains an isomorphism of the groups of morphisms in the homotopy categories

HomHot(A)(Φ(P •), J•) ' HomHot(B)(P
•,Ψ(J•)).

In order to pass from this to the desired isomorphism of the groups of morphisms
in the unbounded derived categories, one can notice that for any (unbounded) com-
plex A• ∈ C(A) endowed with a quasi-isomorphism J• −→ A• of complexes in A
there exists a bounded below complex I• ∈ C+(J) together with a quasi-isomorphism
A• −→ I• of complexes in A. The composition J• −→ A• −→ I• is then a quasi-
isomorphism of bounded below complexes in J. Similarly, for any (unbounded) com-
plex B• ∈ C(B) endowed with a quasi-isomorphism B• −→ P • of complexes in B
there exists a bounded above complex Q• ∈ C−(P) together with a quasi-isomorphism
Q• −→ B• of complexes in B. The composition Q• −→ B• −→ P • is then a quasi-
isomorphism of bounded above complexes in P. �

Restricting to the full subcategories Db(E) ⊂ D−(J) ⊂ D(A) and Db(F) ⊂ D−(P) ⊂
D(B), we conclude that the derived functor LΦ: Db(F) −→ Db(E) (26) is left ad-
joint to the derived functor RΨ: Db(E) −→ Db(F) (20). Replacing all the exact
categories with the categories of unbounded complexes in them, we see that the de-
rived functor LΦC : Db(C(F)) −→ Db(C(E)) (27) is left adjoint to the derived functor
RΨC : Db(C(E)) −→ Db(C(F)) (21).

In order to pass to the desired adjunction between the derived functors
RΨ: D?(E) −→ D?(F) (19) and LΦ: D?(F) −→ D?(E) (25), it remains to apply
the next (well-known) lemma.

Lemma A.4. Suppose that we are given two commutative diagrams of triangulated
functors

D1 D2

D1 D2

//
G

���� ����

//
G

D1 D2

D1 D2

���� ����

oo
F

oo
F
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where the vertical arrows are Verdier quotient functors. Suppose further that the
functor F : D2 −→ D1 is left adjoint to the functor G : D1 −→ D2. Then the functor
F : D2 −→ D1 is also naturally left adjoint to the functor G : D1 −→ D2.

Proof. The adjunction morphisms F ◦G −→ IdD1 and IdD2 −→ G◦F induce adjunc-
tion morphisms F ◦G −→ IdD1

and IdD2
−→ G ◦ F . �

A.5. Triangulated equivalences. The following theorem describes the situation
in which the adjoint triangulated functors RΨ and LΦ turn out to be triangulated
equivalences (cf. the proofs of [15, Theorems 4.9 and 5.10], [19, Theorems 2.6 and 3.3],
and [18, Theorem 7.6], where this technique was used).

Theorem A.5. In the context of Section A.4, suppose that the adjoint derived
functors RΨ: Db(E) −→ Db(F) (20) and LΦ: Db(F) −→ Db(E) (26) are mutu-
ally inverse triangulated equivalences. Then so are the adjoint derived functors
RΨ: D?(E) −→ D?(F) (19) and LΦ: D?(F) −→ D?(E) (25) for all the symbols ? = b,
+, −, ∅, abs+, abs−, or abs, and also for any one of the symbols ? = co or ctr for
which these two functors are defined by the constructions of Sections A.2–A.3.

Moreover, assume that the adjunction morphisms LΦ(Ψ(J)) −→ J and P −→
RΨ(Φ(P )) are isomorphisms in Db(E) and Db(F) for all objects J ∈ J and P ∈ P.
Then the adjoint derived functors (19) and (25) are mutually inverse triangulated
equivalences for all the symbols ? for which they are defined.

Proof. A complex of complexes in an exact category G is acyclic if and only if
it is termwise acyclic. In other words, one can consider the family of functors
Θn

G : C(G)) −→ G, indexed by the integers n, assigning to a complex G• its n-th
term Gn. Then the family of induced triangulated functors Θn

G : D(C(G)) −→ D(G) is
conservative in total. This means that for any nonzero object G•,• ∈ D(C(G)) there
exists n ∈ Z such that Θn

G(G•,•) 6= 0 in D(G).
Now the two such functors Θn

E : Db(C(E)) −→ Db(E) and Θn
F : Db(C(F)) −→ Db(F)

form commutative diagrams with the adjoint derived functors (20–21) and (26–27).
Therefore, the adjoint functors (21) and (27) are mutually inverse equivalences when-
ever so are the adjoint functors (20) and (26). It remains to point out that, in the
context of Lemma A.4, the two adjoint functors F and G are mutually inverse equiv-
alences whenever so are the two adjoint functors F and G.

This proves the first assertion of the theorem, and in fact somewhat more than that.
We have shown that the adjunction morphism LΦ(RΨ(E•)) −→ E• is an isomor-
phism in D?(E) whenever for every n ∈ Z the adunction morphism LΦ(RΨ(En)) −→
En is an isomorphism in Db(E). Now, replacing an object E ∈ E by its coresolu-
tion J• by objects from J, viewed as an object in D?(E) with ? = +, we see that
it suffices to check that the adjunction morphism is an isomorphism for an object
J ∈ J. Similarly, the adjunction morphism F • −→ RΨ(LΦ(F •)) is an isomorphism
in D?(E) whenever for every n ∈ Z the adjunction morphism F n −→ RΨ(LΦ(F n)) is
an isomorphism in Db(F). Replacing an object F ∈ F by its resolution P • by objects
from P, viewed as an object in D?(F) with ? = −, we see that it suffices to check that
the adjunction morphism is an isomorphism for an object P ∈ P. �
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