KOSZULITY OF COHOMOLOGY
— K(r,1)-NESS + QUASI-FORMALITY

LEONID POSITSELSKI

ABSTRACT. This paper is a greatly expanded version of [36, Section 9.11]. A series
of definitions and results illustrating the thesis in the title (where quasi-formality
means vanishing of a certain kind of Massey multiplications in the cohomology) is
presented. In particular, we include a categorical interpretation of the “Koszulity
implies K (m,1)” claim, discuss the differences between two versions of Massey op-
erations, and apply the derived nonhomogeneous Koszul duality theory in order to
deduce the main theorem. In the end we demonstrate a counterexample providing
a negative answer to a question of Hopkins and Wickelgren about formality of the
cochain DG-algebras of absolute Galois groups, thus showing that quasi-formality
cannot be strengthened to formality in the title assertion.
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INTRODUCTION

A quadratic algebra is an associative algebra defined by homogeneous quadratic
relations. In other words, a positively graded algebra A = k& A1 B Ay ® -+ over
a field k is called quadratic if it is generated by its first-degree component A; with
relations in degree 2. A positively graded associative algebra A is called Koszul [39,
4, 32] if one has Torf;-(k;k) = 0 for all 7 # j, where the first grading 7 on the Tor
spaces is the usual homological grading and the second grading j, called the internal
grading, is induced by the grading of A. In particular, this condition for ¢ = 1 means
that the algebra A is generated by A;, and the conditions for ¢ = 1 and 2 taken
together mean that A is quadratic.

Conversely, for any positively graded algebra A with finite-dimensional compo-
nents A, the diagonal part @, Ext’;"(k, k) of the algebra Ext’(k, k) ~ Tor? (k, k)*



is a quadratic algebra. When the algebra A is quadratic, the two quadratic alge-
bras A and @, Ext’}"(k, k) are called quadratic dual to each other. Without the
finite-dimensionality assumption on the grading components, the quadratic duality
connects quadratic graded algebras with quadratic graded coalgebras [32, 33].

When one attempts to deform quadratic algebras by considering algebras with
nonhomogeneous quadratic relations, one discovers that there are two essentially
different ways of doing so. One can either consider relations with terms of the degrees
not greater than 2, that is

(1) g2(r) + q1(z) + g0 = 0,
where z = (z,), degx, = 1 denotes the set of generators and deg g, = n; or relations
with terms of the degrees not less than 2, that is

(2) @2(x) + g3(x) + qa(x) + ¢5(x) +--- = 0.

In the latter case, it is natural to allow the relations to be infinite power series,
that is consider the algebra they define as a quotient algebra of the algebra of for-
mal Taylor power series in noncommuting variables x,, rather than the algebra of
noncommutative polynomials. Almost equivalently, this means considering a set of
relations of the type (2) as defining a conilpotent coalgebra, while a set of relations of
the type (1) defines a filtered algebra. More precisely, of course, one should say that
the complete topological algebra defined by the relations (2) is the dual vector space
to a discrete conilpotent coalgebra. This is one of the simplest ways to explain the
importance of coalgebras in Koszul duality.

The alternative between considering nonhomogeneous quadratic relations of the
types (1) and (2) roughly leads to a division of the Koszul duality theory into two
streams, the former of them going back to the classical paper [39] and the present
author’s work [31], and the latter one originating in the paper [32]. The former the-
ory, invented originally for the purposes of computing the cohomology of associative
algebras generally and the Steenrod algebra in particular, eventually found its ap-
plications in semi-infinite homological algebra. The latter point of view was being
applied to Galois cohomology, the conjectures about absolute Galois groups, and the
theory of motives with finite coefficients. As a general rule, the author’s subsequent
papers vaguely associated with relations of the type (1) were published on the arXiv
in the subject area [math.CT], while the papers having to do with relations of the
type (2) were put into the area [math.KT].

This paper is concerned with relations of the type (2). Its subject can be roughly
described as cohomological characterization of the coalgebras C' defined by the rela-
tions (2) with the quadratic principal parts

(3) ¢2(2) = 0
of the relations definining a Koszul graded coalgebra. In fact, according to the main

theorem of [32] (see also [23]) a conilpotent coalgebra C'is defined by a self-consistent
system of relations (2) with Koszul quadratic principal part (3) if and only if its



cohomology algebra
H*(C) = Exty(k, k)

is Koszul. Moreover, a certain weaker set of conditions on the algebra H* = H*(C)
is sufficient, and implies Koszulity of algebras of the form H*(C). When the algebra
H*(C) is Koszul, it is simply the dual quadratic algebra to the quadratic coalgebra
defined by the relations (3).

Given an arbitrary (not necessarily conilpotent) coaugmented coalgebra D with the
maximal conilpotent subcoalgebra C' = Nilp D C D, the algebra H*(D) = Ext},(k, k)
is Koszul if and only if the following two conditions hold [36, Section 9.11]:

(i) the homomorphism of cohomology algebras H*(C) — H*(D) induced by
the embedding of coalgebras C' — D is an isomorphism;

(i) a certain family of higher Massey products in the cohomology algebra H*(D)
vanishes.

In this paper we provide a detailed proof of this result, and discuss at length its
constituting components.

In particular, the condition (i) and the implication “Koszulity of H*(D) implies (i)”
allow numerous analogues and generalizations, including such assertions as

e for any discrete group I' whose cohomology algebra H*(T', k) with coefficients
in a field & is Koszul, the cohomology algebra H*(I';, k) of the k-completion
of the group T is isomorphic to the algebra H*(T', k) [33, Section 5]; or

e any rational homotopy type X with a Koszul cohomology algebra H*(X, Q)
is a rational K (m, 1) space [30].

That is why we call the condition (i) “the K(m, 1) condition”.

More generally, in place of the cochain DG-algebra of a coaugmented coalgebra D
consider an arbitrary nonnegatively cohomologically graded augmented DG-algebra
0 — A — A — A% — ... over a field k with H°(A®) ~ k. Then the
cohomology algebra H*(A*®) of the DG-algebra A* is Koszul if and only if the following
two conditions hold:

(i) the cohomology coalgebra of the bar-construction of the augmented DG-alge-
bra A® is concentrated in cohomological degree 0;

(i) a certain family of higher Massey products in the cohomology algebra H*(A*)
vanishes.

Once again, we call the condition (i) “the K (m, 1) condition”.
Furthermore, relation sets of the type (2) are naturally viewed up to variable
changes

(4> To — Ta +p2,a<x) +p3,a(x) +p4,a(x) T

where deg p,, o = n. A natural question is whether or when a system of relations (2)
can be homogenized, i. e., transformed into the system (3) by a variable change (4).
We show that a variable change (4) homogenizing a given system of relations (2)
defining a conilpotent coalgebra C' with Koszul cohomology algebra H*(C) exists if



and only if the cochain DG-algebra computing H*(C') is formal, i. e., can be connected
with its cohomology algebra by a chain of multiplicative quasi-isomorphisms.
Obviously, formality implies the Massey product vanishing condition (ii), which
we accordingly call the quasi-formality condition. Not distinguishing formality from
quasi-formality seems to be a common misconception. The above explanations sug-
gest that the cochain DG-algebras of most conilpotent coalgebras C' with Koszul
cohomology algebras H*(C') should not be formal but only quasi-formal, as the pos-
sibility of homogenizing a system of relations (2) looks unlikely, generally speaking.
Indeed, we provide a simple counterexample of a pro-l-group H whose cohomol-
ogy algebra H*(H,Z/l) is Koszul, while the cochain DG-algebra computing it is not
formal, as the relations in the group coalgebra Z/I(H) cannot be homogenized by
variable changes. It was conjectured in the papers [32, 36] that the cohomology alge-
bra H*(Gr,Z/1) is Koszul for the absolute Galois group G of any field F' containing
a primitive [-root of unity; and the question was asked in the paper [16] whether the
cochain DG-algebra of the group G with coefficients in Z /[ is formal. As the group
H in our counterexample is the maximal quotient pro-l-group of the absolute Galois
group Gy of an appropriate p-adic field F' containing a primitive [-root of unity, our
results provide a negative answer to this question of Hopkins and Wickelgren.
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1. KoszuLity IMPLIES K (7, 1)-NESS

Postponing the discussion of DG-algebras, DG-coalgebras, and derived nonhomo-
geneous Koszul duality to Sections 2-4, we devote this section to the formulation of a
categorical version of the “Koszulity implies K (7, 1)” claim. We begin our discussion
with recalling some basic definitions and results from [32] and [33, Section 5.

A coassociative counital coalgebra D over a field k is said to be coaugmented if it
is endowed with a coalgebra morphism k& — D (called the coaugmentation). The
quotient coalgebra (without counit) of a coaugmented coalgebra D by the image of
the coaugmentation morphism is denoted by D, = D/k.
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A coaugmented coalgebra C' is called conilpotent if for any element ¢ € C' there ex-
ists an integer m > 1 such that c is annihilated by the iterated comultiplication map
C — C9™1. (Several references and terminological comments related to this defi-
nition can be found in [34, Remark D.6.1].) The maximal conilpotent subcoalgebra
U,, ker(D — DS of a coaugmented coalgebra D is denoted by Nilp D C D.

The cohomology algebra of a coaugmented coalgebra D is defined as the Ext algebra
H*(D) = Ext},(k, k), where the field £ is endowed with a left D-comodule structure
via the coaugmentation map. The cohomology algebra H*(D) is computed by the
reduced cochain DG-algebra of the coalgebra D

k— Dy — D, @t Dy — D, @ Dy @ Dy —— -+ |

which is otherwise known as the reduced cobar-complex or the cobar construction of
the coaugmented coalgebra D and denoted by Cob*(D).
The following result can be found in [33, Corollary 5.3].

Theorem 1.1. Let D be a coaugmented coalgebra over a field k and Nilp D C D be
its mazimal conilpotent subcoalgebra. Assume that the cohomology algebra H*(D) =
Ext}, (k, k) is Koszul. Then the embedding Nilp D — D induces a cohomology iso-
morphism H*(Nilp D) ~ H*(D).

Theorem 1.1 has a version with an augmented algebra R replacing the coaugmented
coalgebra D [33, Remark 5.6]. Let R, = ker(R — k) denote the augmentation ideal,
and let I run over all the ideals I C R, in R for which the quotient algebra R/
is finite-dimensional and its augmentation ideal R, /I is nilpotent. The coalgebra of
pronilpotent completion R~ of the augmented algebra R is defined as the filtered in-
ductive limit R~ = hﬂ]<R/ I)* of the coalgebras (R/I)* dual to the finite-dimensional
algebras R/I. Clearly, the coalgebra R is conilpotent.

The cohomology algebra H*(R) = Exty(k, k) of an augmented algebra R is com-
puted by its reduced cobar-complex Cob®(R)

k > R » (R @ Ry)" —— (R @ Ry @ Ry)" —— -+
The natural injective morphism of cobar-complexes Cob®(R~) — Cob®*(R) induces
a natural morphism of cohomology algebras H*(R~) — H*(R).

Theorem 1.2. Let R be an augmented algebra over a field k and R~ be the
coalgebra of its pronilpotent completion.  Assume that the cohomology algebra
H*(R) = Extp(k,k) is Koszul. Then the natural morphism of the cohomology
algebras H*(R™) — H*(R) is an isomorphism.

The proofs of Theorems 1.1 and 1.2 are based on the following result about the
cohomology of conilpotent coalgebras [32, Main Theorem 3.2]. For any positively
graded algebra H* over a field k, we denote by q H* the quadratic part of the algebra
H*, i. e., the universal final object in the category of quadratic algebras over k
endowed with a morphism into H*. The quadratic algebra q H* is uniquely defined by
the condition that the morphism of graded algebras q H* — H* is an isomorphism
in degree 1 and a monomorphism in degree 2.
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Theorem 1.3. Let C' be a conilpotent coaugmented coalgebra, i. e., NilpC = C.
Assume that

e the quadratic part q H*(C) of the graded algebra H*(C') is Koszul; and
e the morphism of graded algebras q H*(C) — H*(C) is an isomorphism in
degree 2 and a monomorphism in degree 3.
Then the graded algebra H*(C') is quadratic (and consequently, Koszul). O

The proof of Theorem 1.1 can be found in [33, Theorem 5.2 and Corollary 5.3].
The proof of Theorem 1.2 is very similar; let us briefly explain how it works.

Proof of Theorem 1.2. One notices that for any augmented algebra R the morphism
of cohomology algebras H*(R~) — H*(R) is an isomorphism in degree 1 and a
monomorphism in degree 2. Indeed, the category of left comodules over R~ is isomor-
phic to the full subcategory in the category of left R-modules consisting of all the ind-
nilpotent R-modules (direct limits of iterated extensions of the trivial R-module k,
the latter being defined in terms of the augmentation of R). This is a full subcategory
closed under subobjects, quotient objects, and extensions in the abelian category of
left R-modules; so the argument of [33, Lemma 5.1] applies.

Now if the algebra H*(R) is Koszul, then it follows that the maps H'(R~) —
H'Y(R) and H*(R") — H?*(R) are isomorphisms, the composition q H*(R~) —»
H*(R™) — H*(R) is an isomorphism of graded algebras, and the algebra H*(R")
satisfies the conditions of Theorem 1.3. Hence we conclude that the algebra H*(R"™)
is quadratic and the morphism H*(R"~) — H*(R) is an isomorphism. O

A generalization of the results of Theorems 1.1 and 1.2 to t-structures in trian-
gulated categories [1, n°1.3] was announced in [33, Remark 5.6]. The idea of this
generalization can be described as follows.

Recall that for any t-structure (DSY, D) on a triangulated category D with the
core C = DS N D>% and for any two objects X, Y € C there are natural maps

cp(X,Y): Ext¢(X,Y) —— Homp(X,Yn]), n =0,

from the Ext groups in the abelian category C to the Hom groups in the triangulated
category D. The maps 0¢ p = 0¢p(X,Y) transform the compositions of Yoneda
Ext classes in C into the compositions of morphisms in D. Furthermore, the maps
¢ p are always isomorphisms for n < 1 and monomorphisms for n = 2 (see [1,
Remarque 3.1.17], [3, Section 4.0], or [36, Corollary A.17]).

Starting with a coaugmented coalgebra D, consider the conilpotent coalgebra C' =
Nilp D and the abelian category C of finite-dimensional left C'-comodules. Consider
the bounded derived category of left D-comodules D?(D—comod), and set D to be
the full subcategory of D°(D—comod) generated by the abelian subcategory C C
D—comod. Then C is the core of a bounded t-structure on D.

Analogously, starting with an augmented algebra R, consider the conilpotent coal-
gebra C'= R~ and the abelian category C of finite-dimensional left C-comodules (or,
which is the same, finite-dimensional nilpotent R-modules). Consider the bounded
derived category of left R-modules D°(R-mod), and set D to be the full triangulated
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subcategory of DP(R-mod) generated by the abelian subcategory C C R-mod. Once
again, C is the core of a bounded t-structure on D.
In both cases, the assertions of Theorems 1.1 and 1.2 claim that the map

Z,D(k:,k): Ext¢(k, k) — Homp(k, k[n])

is an isomorphism for all n, provided that the graded algebra Homp (k, k[%]) is Koszul.
Here the trivial D-comodule or R-module k is the only irreducible object in C. All ob-
jects of the abelian category C being of finite length, it follows that all the morphisms
0¢ p are isomorphisms for the t-structures under consideration.

A t-structure for which all the maps 6¢ , are isomorphisms is called a “t-structure
of derived type” [3, Section 4.0]. This condition is also known as the “K (7, 1) condi-
tion of Bloch and Kriz” [7] and, in somewhat larger generality, as the “silly filtration
condition” [36, Sections 0.2-0.5]. Proving that a given t-structure is of derived type
is sometimes an important and difficult problem (see, e. g., [2]). A standard ap-
proach working in some particular cases can be found in [22, Section 12] (see also [37,
Section A.2]); the results below in this section provide an alternative way.

Let S = {a} be a set of indices. A big ring (or a “ring with many objects”) A is a
collection of abelian groups Ap ; endowed with the multiplication maps Aag x Ag, —
Aq and the unit elements 1, € A, satisfying the conventional associativity and unit
axioms. A big ring with a set of indices S is the same thing as a preadditive category
with the objects indexed by S (see [29] or [36, Section A.1]).

The categories of left and right modules over a big ring are defined in the obvious
way. A left (resp., right) A-module is the same thing as a covariant (resp., con-
travariant) additive functor from the preadditive category corresponding to A to the
category of abelian groups. The constructions of the functor of tensor product of right
and left modules over A and its left derived functor Tor” are also straightforward.

A big graded ring (or a “graded ring with many objects”) A is a big ring in which
every group A,p is graded and the multiplication maps are homogeneous. In other
words, it is a collection of abelian groups Af; endowed with the multiplication maps
Aby x A% — APF and the unit elements 1, € A7, satisfying the associativity and
unit axioms. We will assume that A7z = 0 for n < 0 or @ # 8 and n = 0, and that
the rings A%  are (classically) semisimple.

The definition of the Koszul property of a nonnegatively graded ring A = Ag® AP
Ay @ -+ with a semisimple degree-zero component Ay is pretty well known [4], and
the definition of a Koszul big graded ring in the above generality is its straight-
forward extension. Specifically, a big graded ring A is called Koszul if one has
ToriAj(Aga, Ajg) =0 for all @, B € S and all i # j. One can also define quadratic big
graded rings and the quadratic part of a big graded ring, etc. A discussion of the
Koszul property of big graded rings in a greater generality with the semisimplicity
condition replaced by a flatness condition can be found in [36, Section 7.4, and even
without the flatness condition, in the rest of [36, Section 7].

The following theorem is the main result of this section.



Theorem 1.4. Let C be the core of a t-structure on a small triangulated category D.
Suppose that every object of C has finite length and let I, be the irredicible objects
of C. Assume that the big graded ring A with the components A, 5 = Homp (4, I[n])
is Koszul. Then for any two objects X, Y € C and any n = 0 the natural map
02 p(X,Y): Ext¢(X,Y) — Homp (X, Y[n]) is an isomorphism.

The above theorem is deduced from the following result about the Ext rings be-
tween irreducible objects in abelian categories, which is a categorical generalization
of Theorem 1.3.

Theorem 1.5. Let C be a small abelian category such that every object of C has
finite length and let 1, be the irreducible objects of C. Consider the big graded ring
B with the components By, 5 = Ext¢(la, I5). Assume that

(I) the quadratic part q B of the big graded ring B is Koszul; and
(IT) the morphism of big graded rings q B — B is an isomorphism in the de-
gree n = 2 and a monomorphism in the degree n = 3.

Then the big graded ring B is quadratic (and consequently, Koszul).

Actually, the following slightly stronger form of Theorem 1.4, generalizing both
Theorems 1.4 and 1.5, can be obtained from Theorem 1.5. It is a categorical gener-
alization of [33, Theorem 5.2].

Theorem 1.6. Let C be the core of a t-structure on a small triangulated category D.
Suppose that every object of C has finite length and let I, be the irredicible objects
of C. Consider the big graded rings A and B with the components Ay, 5 = Ext¢(la, I5)
and B} ;3 = Homp(la, Ig[n]). Then whenever the big graded ring B satisfies the
assumptions (I) and (II) of Theorem 1.5, the natural morphism of big graded rings
A — B induces an isomorphism A ~ qB.

Let us clarify the following point, which otherwise might become a source of con-
fusion. It is well-known [1, 3, 36] that for a t-structure with the core C on a triangu-
lated category D the natural maps 0¢ p(X,Y): Ext¢(X,Y) — Homp(X,Y[n]) are
isomorphisms for all X, Y € C, n > 0 if and only if any element in Homp (X, Y [n])
can be decomposed into a product of n elements from the groups Homp (U, V[1]) with
U,V € C. However, this is only true because one considers the degree-one generation
condition for X and Y running over all the objects of C and not just the irreducible
objects (cf. [36, Proposition B.1]). The Koszulity condition in Theorem 1.4 is much
stronger than a degree-one generation condition, but it is applied to a much smaller
algebra of homomorphisms between the irreducible objects of C. On the other hand,
the big graded ring of Yoneda extensions between all the objects of a given abelian
category is always Koszul in an appropriate sense [36, Example 8.3].

Example 1.7. Given a discrete group I' and a field k, set C to be the coalgebra
of (functions on) the proalgebraic completion of I' over k. Then the category C of
finite-dimensional representations of a group I' over a field k is isomorphic to the
category of finite-dimensional left C'-comodules. Let D denote the full triangulated
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subcategory of the bounded derived category DP(k[[']-mod) of arbitrary I'-modules
over k generated by the subcategory of finite-dimensional modules C C k[I']-mod.
Then C is the core of a (bounded) t-structure on D, so Theorems 1.4-1.6 are applicable
whenever the Koszulity assumption or the assumptions (I-II) are satisfied. This
would allow to obtain a comparison between the cohomology of (the proalgebraic
group corresponding to) the coalgebra/commutative Hopf algebra C' and the discrete
group [ with finite-dimensional coefficients.

Let us emphasize that we do not assume the abelian category C or the triangulated
category D to be linear over a field in the above theorems. E. g., the category of finite
modules over a profinite group is fine in the role of C, as is the category of modules
of finite length over any complete commutative local ring, etc.

Proof of Theorem 1.6. This is a particular case of [36, Corollary 8.5]. By a gen-
eral property of t-structures (see [1, Remarque 3.1.17] or [36, Corollary A.17]), the
morphism of big graded rings A — B is an isomorphism in degree 1 and a monomor-
phism in degree 2 (cf. the proof of Theorem 1.2). It follows that if the ring B satisfies
the conditions (I) and (II), then so does the ring A. By Theorem 1.5, one can then
conclude that the big graded ring A is quadratic, and hence A ~ q B. U

Proof of Theorem 1.4. According to Theorem 1.6, the map ¢ H(X,Y’) is an isomor-
phism whenever the objects X and Y € C are irreducible. The general case follows
by induction on the lengths. O

Brief sketch of proof of Theorem 1.5. This is a particular case of [36, Theorem 8.4].

Let us start with a comment on the proof of Theorem 1.3. It is based on two
ingredients: the basic theory of quadratic and Koszul graded algebras and coalgebras
over a field, and the spectral sequence connecting the cohomology of a conilpotent
coalgebra C' with the cohomology of its associated graded coalgebra with respect to
the coaugmentation filtration. In the case of Theorem 1.5, first of all one needs to
develop the basic theory of quadratic and Koszul big graded rings, which is done (in
a greater generality) in [36, Sections 6-7]. Then one has to work out the passage
from the ungraded category C to its graded version.

One possible approach to the latter task would be to associate a coalgebra-like
algebraic structure with an abelian category consisting of objects of finite length,
then filter that structure and pass to the associated graded one. The required class
of algebraic structures was introduced in [10, § IV.3-4]. An abelian category consisting
of objects of finite length is equivalent to the category of finitely generated discrete
modules over a pseudo-compact topological ring. One would have to embed the
category of finitely generated discrete modules into the category of pseudo-compact
modules in order to do cohomology computations with projective resolutions.

There is a more delicate approach developed in [36, Sections 3-4|, which is purely
categorical. One associates with an abelian category C consisting of objects of finite
length the exact category F whose objects are the objects of C endowed with a finite
filtration for which all the successive quotient objects are semisimple. Then one needs
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to pass from the filtered exact category F to the associated graded abelian category G.
The main property connecting the categories C and F is the natural isomorphism

(5) Extg(u(X),u(Y)) ~ lim Extg(X,Y (m)),

where u: F — C is the functor of forgetting the filtration and Z — Z(m) denotes
the filtration shift. The main property connecting the categories F and G is the long
exact sequence

(6) - —— Extl(X,Y(—1)) — Ext®(X,Y)
—— BExtg(gr X, grY) — Extp™(X,Y(~1)) — ---

for any two objects X, Y € F, where gr: F — G is the functor assigning to a filtered
object its associated graded object. The construction of the category G is a particular
case of a general construction of the reduction of an exact category by a graded center
element developed in the paper [38].

The isomorphism (5) and the long exact sequence (6) taken together are used in
lieu of the spectral sequence connecting the cohomology of a coalgebra C' and its
associated graded coalgebra gry C by the coaugmentation filtration N in order to
extend the argument from [32, Main Theorem 3.2] from conilpotent coalgebras to
abelian categories consisting of objects of finite length. ([l

2. Koszurity IMPLIES QUASI-FORMALITY

Generally speaking, Massey products are natural partially defined multivalued
polylinear operations in the cohomology algebra of a DG-algebra which are preserved
by quasi-isomorphisms of DG-algebras. There are several different ways to construct
such operations. We start with introducing the construction most relevant for our
purposes, and later explain how it is related to a more elementary construction. The
most relevant reference for us is [25]; see also the earlier paper [41], the heavier [26],
and the later work [12, Section 5].

Let A* = (A*, d: A® — A™1) be a nonzero DG-algebra over a field k; suppose that
it is endowed with an augmentation (DG-algebra morphism) A* — k and denote
the augmentation kernel ideal by A% = ker(A* — k). By the definition, the bar
construction Bar®(A®) of an augmented DG-algebra A* is the tensor coalgebra

Bar(A) = @, A [1]*"

of the graded vector space A, [1] obtained by shifting by 1 the cohomological grading
of the augmentation ideal A,. The grading on Bar(A) is induced by the grading of
AL [1]. Alternatively, one can define the bar construction Bar(A) as the direct sum
of the tensor powers A" of the vector space A, and endow it with the total grading
equal to the difference ¢ — n of the grading ¢ induced by the grading of A, and the
grading n by the number of tensor factors.

The differential on Bar®(A*) is the sum of two summands d+ 0, the former of them
induced by the differential on A% and the latter one by the multiplication in A% .
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One has to work out the plus/minus signs in order to make the total differential on
Bar*(A*) square to zero; this is a standard exercise.
One defines a natural increasing filtration on the complex Bar®(A®) by the rule

F, Ban®(A4°) = @y A, [1]°".

The associated graded complex gr’” Bar®(A*®) of the complex Bar*(A*®) by the filtration
F is naturally identified with the graded vector space Bar(A) endowed with the
differential d induced by the differential on A% . The spectral sequence E?? of the
filtered complex Bar®(A*®) has the initial page

EY! = (H*(A3)")",
where the grading g on the tensor power H*(A$)*P of the augmentation ideal H*(A$,)

of the cohomology algebra H*(A*®) of the DG-algebra A is induced by the cohomo-
logical grading on H*(A%). The differentials are

dP1- EP4 , Epfanvﬂrl’
and the limit page is given by the rule
EP? = grl” HTP Bar®(A*).

The cohomology of the complex Bar®(A®*) are known as the differential Tor
spaces [9, 12] H* Bar®(A®) = Tor" (k, k) (“of the first kind” [17]) over the DG-alge-
bra A°. This is the derived functor of tensor product of DG-modules over A* defined
on the “conventional” derived categories of DG-modules (obtained by inverting
the DG-module morphisms inducing isomorphisms of the cohomology modules);
see [21], [14], or [35, Section 1]. The spectral sequence EP is called the algebraic
Filenberg—Moore spectral sequence associated with a DG-algebra A® [9, 12, 13].

The differential d; is induced by the multiplication in the cohomology algebra

H*(A*), and whole the page F; is simply the bar-complex of the cohomology algebra
H*(A*). Hence the page Ey can be computed as

E? = Tor" M) (k. k),

Pq
where the first grading p on the Tor spaces in the right-hand side is the conventional
homological grading of the Tor and the second grading ¢ is the “internal” grading
induced by the cohomological grading on the algebra H*(A*).

The differentials d??, r > 2, in the algebraic Eilenberg-Moore spectral sequence
EP1 = EPI(A*) associated with an augmented DG-algebra A® are, by the definition,
the Massey products in the cohomology algebra H*(A*®) that we are interested in.
An augmented DG-algebra A* is called quasi-formal if the spectral sequence EP9(A*)
degenerates at the page Es, that is all the Massey products d??, r > 2, vanish.

An augmented DG-algebra A* is called formal (in the class of augmented
DG-algebras) if it can be connected with its cohomology algebra H*(A*), viewed as
an augmented DG-algebra with zero differential and the augmentation induced by
that of A®, by a chain of quasi-isomorphisms of augmented DG-algebras.

Proposition 2.1. Any formal augmented DG-algebra is quasi-formal.
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Proof. Notice that any morphism of augmented DG-algebras A* — B*® induces a
morphism of spectral sequences EP?(A*) — EPY(B*). When the morphism A* —
B* is a quasi-isomorphism, the induced morphism of spectral sequences in an isomor-
phism on the pages E;, and consequenly also on all the higher pages. So the Massey
products are preserved by quasi-isomorphisms of augmented DG-algebras.
Therefore, whenever an augmented DG-algebra A*® is connected with an augmented
DG-algebra B* by a chain of quasi-isomorphisms of augmented DG-algebras, an
augmented DG-algebra A® is quasi-formal if and only if an augmented DG-algebra
B* is. Since the Massey products in a DG-algebra with zero differential clearly vanish
(as do the higher differentials in the spectral sequence of any bicomplex with one of
the two differentials vanishing), the desired assertion follows. 0

An extension of (a part of) the canonical, partially defined, multivalued Massey
operations on the cohomology algebra of a DG-algebra A* to total, single-valued poly-
linear maps, which taken together are defined up to certain transformations, is called
the A -algebra structure on the cohomology algebra H*(A*®) of a DG-algebra A*
[41, 19, 20, 11, 24]. The A-algebra structure on H*(A®) determines a DG-algebra
A*® up to quasi-isomorphism. Thus, while vanishing of the Massey operations in the
cohomology only makes a DG-algebra A* quasi-formal, vanishing of the higher oper-
ations in (a certain representative of the A -isomorphism class of) the A.-algebra
structure on H*(A*) would actually mean that the DG-algebra A*® is formal.

Let m # 0 be an integer. Suppose that the cohomology algebra H*(A*) is concen-
trated in the cohomological gradings ¢ = mn, n =0, 1, 2, ..., one has H°(A*) = k,
and the algebra H*(A*) is Koszul in the grading rescaled by m, i. e., one has

Torg;(A.)(k, k)=0 for mp # q.

Then all the differentials dP?, r > 2, vanish for “dimension” (bigrading) reasons, and
the DG-algebra A*® is quasi-formal (cf. [5]). One can say that this is an instance of
intrinsic quasi-formality, i. e., a situation when any augmented DG-algebra with a
given cohomology algebra is quasi-formal. In this paper, we are interested in the case
m = 1, i. e., the situation when the augmentation ideal H*(A%) of the cohomology

algebra H*(A*) is concentrated in the cohomological degrees 1, 2, 3 ...

Corollary 2.2. Suppose that the cohomology algebra H*(A®) of an augmented
DG-algebra A® is positively cohomologically graded and Koszul in its cohomological
grading. Then the augmented DG-algebra A*® is quasi-formal.

Proof. This is a corollary of the definitions, as explained above. 0J

For lack of a better term, let us call the Massey products discussed above the
tensor Massey products. Our next aim is to compare these with a more elementary
construction that we call the tuple Massey products.

One reason for our interest in tuple Massey products and this comparison comes
from the application to the absolute Galois groups and Galois cohomology. A conjec-
ture of ours claims that the cohomology algebra H*(Gg,Z/l) of the absolute Galois
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group G of a field F' containing a primitive [-root of unity is Koszul [32, 36]. On the
other hand, there is a series of recent papers [16, 27, 8, 28] discussing and partially
proving the conjecture that tuple Massey products of degree-one elements vanish
in the cohomology algebra H*(Gg,Z/l). The results above in this section and the
discussion below show that the Koszulity conjecture implies vanishing of the tensor
Massey products in H*(G g, Z/1), but may have no direct implications concerning the
problem of vanishing of the tuple Massey products.

Let A* = (A*, d: A" — A™) be a DG-algebra over a field k; assume for simplicity
that A° =0 for i < 0 and A° = k (so in particular d°: A° — Al is a zero map and
the DG-algebra A*® has a natural augmentation A* — k). Let B* C Z* C A’ denote
the subspaces of coboundaries and cocycles in A®, so that H = H'(A®*) = Z'/B*. The
simplest possible construction of a 3-tuple Massey product of degree-one elements in
the cohomology algebra H*(A*®) proceeds as follows.

Let x, y, 2 € H*(A*) be three elements for which xy = 0 = yz in H*(A*). Pick
some preimages 7, 9, 2 € Z! of the elements z, y, z € H'. Then the products Z7 and
§Z are coboundaries in A?%; so there exist elements ¢ and ¢ € A! such that d{ =
and d¢ = 7% in A%, Hence one has

d(Z€+(2) = —2d(&) +d(()2 = -9z + yZ = 0,
so the element 7€ + (Z is a cocycle in A%, By the definition, one sets the 3-tuple
Massey product (z,y, z) € H*(A*) to be equal to the cohomology class of the cocycle
TE+ (2 e 7%

We have made some arbitrary choices along the way, so it is important to find out
how does the output depend on these choices. Replacing the cochain ¢ by a different
cochain ¢’ with the same differential d¢’ = zj € A% adds the product of two cocycles
"=z e Z' -z C Z? to the cocycle € + (Z € Z?. This means adding an element
of the subspace H' - 2 C H? to our 3-tuple Massey product (z,y,2) € H?(A*).

Similarly, replacing the cochain & by a different cochain & with the same differential
d¢’ = gz adds the product of two cocycles #(&' — &) € - Z' C Z? to the cocycle
& + (Z € Z?, which means adding an element of the subspace x - H! C H? to the
3-tuple Massey product (x,y, z).

Furthermore, since we have assumed that A° = k, the preimages 7, 7, Z € Z!
of given elements z, y, z € H! are uniquely defined. However, even without the
A = k assumption, one easily checks that the choice of the preimages %, ¢, Z does
not introduce any new indeterminacies into the output of our 3-tuple Massey product
construction as compared to the ones we already described.

To conclude, the tuple Massey product of three elements z, y, z € H'(A*) with
ry =0 =yz in H*(A*) is well-defined as an element of the quotient space

(x,y,2) € H*(A)/(z-H + H' - 2).

Now let us describe the connection with the tensor Massey products. Suppose that
we want to extend the above construction to elements of the tensor product space
H'(A*)®3 = HY(A®*) @ H'(A®*) ® H'(A®). With any three vectors z, y, z € H'(A*)
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one can associate the decomposable tensor 1 @ y ® z € H'(A®*)®3; however, not every
tensor is decomposable.

Let m: A* ®, A* — A* denote the multiplication map in the DG-algebra A°.
We denote the induced (conventional) multiplication on the cohomology algebra by
my: H*(A*) @ H*(A®*) — H*(A®). Let K? C H'(A*) ®; H'(A*®) denote the kernel
of the multiplication map my: H'(A®*) @y H'(A®) — H?(A*). We would like to have
our triple Massey product defined on the subspace

K*@p H'(A") N H'(A") @, K* C H'(A*)®.

The construction proceeds as follows. Given a tensor § € K> @ H' N H' ® K* C
H'® H' ® H', we lift it to a tensor # in Z' ® Z' ® Z' and apply the maps of
multiplication of the first two and the last two tensor factors m12) = m ®id and
m?¥) = id ®@m to obtain a pair of elements m(1?(0) € B2®Z' and m*) () € Z'® B2
Then we lift these two elements arbitrarily to elements in A' ® Z! and Z! @ Al,
respectively, and finally apply the product map m to each of them and add the
results in order to obtain an element in A?. By virtue of a computation similar to
the above, this turns out to be an element of Z?. Its image in H?(A*®), denoted by
mg3(0), is the triple tensor Massey product of our tensor 6.

What is the subspace in H?*(A*) up to which the element mj3(6) is defined? Let
W, C H' be the minimal vector subspace for which § € W, ® H' ® H', and let
W, be the similar minimal subspace for which § € H' @ H* @ W, (hence in fact
6 eW, @ H' ® W,.). If one is careful, one can make the Massey product m3(6) well-
defined up to elements of W;- H' + H' - W, C H?*(A*®). However, generally speaking,
for “most” tensors # € K? ® H' N H' ® K? (and certainly for “most” tensors in
H'® H' ® H') one would expect W; = H! = W,. So the triple Massey product that
we have constructed is most simply viewed as a linear map

msy: K? @, HY(A®) N HY(A®) @), K* —— H?*(A*)/mqo(H'(A")®,H'(A*)),
K? =ker(my: H'(A®) @ H'(A*) — H?*(A®)).
Notice that one has
K2 @y HY(A®) N HY(A") @), K =~ Tory,“7 (k, k) = E3*
and o
H2(A*) fmy(H' (A% @ H(A%)) ~ Tor, " (k, k) = B}
in the Eilenberg—Moore spectral sequence. We have obtained an explicit construction
of the differential
e L—
which is the simplest example of a tensor Massey product in the sense of our definition.
How is this triple tensor Massey product construction related to the 3-tuple Massey
product defined above? On the one hand, a subspace K? C H' ® H' may well
contain no nonzero decomposable tensors at all, while containing many nontrivial

indecomposable tensors. Then there may be also many nontrivial indecomposable
tensors in K' ® H' N H' @ K2?. So the domain of definition of the tensor Massey
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product may be essentially much wider than that of the tuple Massey product. On
the other hand, the latter, more elementary construction may produce its outputs
with better precision, i. e., modulo a smaller subspace in H?(A*®). Thus the map ms
carries both more and less information about the DG-algebra A*® than the operation
(x,y, z) in the cohomology algebra H*(A*).

Similarly, let xy, xa, 73, 14 € H'(A®) be four elements for which z 2y = zox3 =
r3ry = 0 in H?(A®). Since we have assumed that A° = k, these elements have
uniquely defined defined preimages in Z' ~ H', which we will denote by &1, s, 73,
Z4. The products T1Zy, T273, and T324 are coboundaries in A?, so there exist three
elements 712, 793, M3 € A' such that dn,s = 7,7, forall 1 <r <s <4, s—r = 1.
The elements

T1Mos + mods  and  Tonsy + miods € Z°
represent the 3-tuple Massey products (1, x9, x3) and (s, 23, x4). Suppose that these
two cocycles are coboundaries, i. e., there exist two elements (193 and (o34 € A' such
that d(.ss = Tpnst + sy for 1 <Kr<s<t <4, t—s=s—r=1. One has

d(Z1Co34 + Tansa + Ci23la)
= —Z1T2734 — T1M23T4 + T1T2M34 — 2T3T4 + T1723T4 + 22374 = 0,
so the element &1 (o34 + Ni2M34 + Cr2374 is a cocycle in A%, By the definition, one sets
the 4-tuple Massey product (zy,xo,x3,14) € H*(A®) to be equal to the cohomology
class of this cocycle.

Let us briefly describe the tensor version of the quadruple Massey product. Let
K3 Cc K?@ H'n H' ® K? ¢ H'(A*)®? denote the kernel of the above map ms.

Consider the intersection of two vector subspaces K*® H'NH'® K? inside H*(A*)®*.
Then the desired map is
my: K? @ HY(A®) N HY(A®) @ K* —— (H?*(A®)/immy)/imms.
Its explicit construction is based on the same formulas as the above construction of
the 4-tuple Massey product. This is the differential
dy*: Byt —— By?

in the Eilenberg—Moore spectral sequence.
The n-ary tensor Massey product of degree-one elements is a partially defined
multivalued linear map

my: HY(A) @ H'(A*) ® --- @ H'(A®) ———» H?*(A*)
that can de identified (up to a possible plus/minus sign) with the differential

b . b 172
no BTy —— BT
As in the case of triple Massey products, the constructions of the n-tuple and n-ary
tensor Massey products agree where the former is defined up to elements of the

subspace up to which the latter is defined. However, the domain of definition of the
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tensor Massey product may be wider than that of the tuple Massey product, while
the tuple Massey product may produce its outputs with better precision.

Now let us consider the case when the cohomology algebra H*(A*) is generated by
H' (as an associative algebra with the conventional multiplication my). Then, the
map my: H'(A*) ® H'(A*) — H?(A®) being surjective, the above tensor Massey
product maps ms, my, ... vanish automatically (as their target spaces are zero). So
do the similar Massey products

dg’,j{i_m—i_jp: Hh (A.) R ® ij(A-) s Hjl+~..+jp_p+2(Al),

Ji, ---5 Jp = 1, p = 3, in the higher cohomology.
Does it mean that all the differentials d?¢ in the Eilenberg-Moore spectral sequence
vanish for r > 27 Not necessarily. The first possibly nontrivial example would be

d421,4: HI(A0)®4 s Hl(Ao) ® HQ(AQ) EB H2<Ao> ® Hl(A.)
This is the map whose source space is actually the kernel Torﬂ (A.)(k, k) the differ-
ential d*: H'(A*)®* — H'(A®*)®3, that is, the subspace
KPoH'@H'NH'@K?@H'NH'®@ H' @ K* ¢ H'(A*)®
and whose target space is the middle homology space Torgg(A.) (k, k) of the sequence
He®H ®@H — H@H' & H @ H> — H®

formed by the differentials d?’?’ and d%’g. The latter vector space is otherwise known
as the space of relations of degree 3 in the graded algebra H*(A*®).

What does the map d§’4 do? TIts source space can be otherwise described as the

intersection

(KP@H'NMH'@ K@ H' N H'® (K*®@ H' N H' ® K?).

The map (m3 ® id, id ®mg3) acts from this subspace to the quotient space of the
vector space H?> ® H' @& H' @ H? by the image of the map (my ®id, id ®m3) coming
from the direct sum of two copies of H! @ H* ® H'. It is claimed that the map
(m3®id, id ®ms3) can be naturally lifted to the quotient space of H*®@ H' @& H' @ H?
by the image of only one (diagonal) copy of H* ® H' @ H', as one can see from the
explicit constructon of ms.

Indeed, let us restrict ourselves to decomposable tensors now (for simplicity of
notation). Let xy, o, 3, x4 be four elements in H'(A*) for which x 2y = xow3 =
1374 = 0in H*(A*), and let Ty, T, T3, T4 be the liftings of these elements to Z' ~ H'.
Let 112, 723, N34 be three elements in A! such that dn,, = Z,%, in B> C A? for all
1 <r <s<4 s—r =1 Then the triple Massey products are (x,zs,x3) =
(T17m23 + M2z mod B?) and (19, 23, 74) = (Tonsa + 12374 mod B?) € H?. Replacing
Nrs With 7., = 15 + Urs with g, € Z' for all 1 <r < s < 4, s —r = 1, one obtains
(w1, 9, 23) = T1Mhs + 193 mod B? = (1, T2, x3) + T1Y3 + Y1273 and (xy, T3, 14) =
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Tonly+1h3Zsa mod B? = (19, T3, T4) +Toysa+Yo3T4, where y,, € H' are the cohomology
classes of the elements §,, € Z'. Finally, one has

(<$17$27$3>, @ Ty, T1Q <$2,$37$4>,) = ((xl, $2,$3> & Ty, T1 O (962,%3, I4>)
+ ((x1Y23 + Y1273) @ T4, T1 @ (T2y3a + Yo324))
and

((z1y23 + Y1273) ® x4, T1 ® (T2y34 + Yo374))
= d?’g(fl @123 D T4+ Y12 @ T3 @ Ty + 71 ® To ® Y34)

in H>® H' & H' @ H?, because z3w4 = 1175 = 0 in H?(A*®) by assumption.

What if the cohomology algebra H*(A®) is not only generated by H', but also
defined by quadratic relations? There still can be nontrivial tensor Massey operations
(i. e., the differentials dP? with r > 2), starting from

d°: HY(A"®® ——-s H*Q H'QH' @ H'@ H*® H' @ H' ® H' @ H>.
This is actually well-defined as a linear map from the source space
Torg;(A.)(k,k‘) ~ 0?21 H1<A.)®z‘71 QK2 ® Hl(A.)®4—i - Hl(A')®5

to a target space isomorphic to Torgi(A.)(k‘, k). The latter Tor space is the first
obstruction to Koszulity of a quadratic graded algebra H*(A*).

3. NONCOMMUTATIVE (RATIONAL) HOMOTOPY THEORY

From an algebraist’s point of view, rational homotopy theory is an equivalence
between categories of commutative and Lie DG-(co)algebras satisfying appropriate
boundedness conditions and viewed up to quasi-isomorphism. The classical formula-
tion [40] claims an equivalence between the categories of negatively cohomologically
graded Lie DG-algebras and augmented cocommutative DG-coalgebras with the aug-
mentation ideals concentrated in the cohomological degrees < —2. The localizations
of such two categories of DG-(co)algebras by the classes of (co)multiplicative quasi-
isomorphisms are equivalent over any field of characteristic 0; over the field of rational
numbers, these are also identified with the localization of the category of connected,
simply connected topological spaces by the class of rational equivalences.

Attempting to include a nontrivial fundamental group into the picture, people usu-
ally consider nilpotent topological spaces, nilpotent groups, and Malcev completions.
Here a discrete group is called nilpotent if its lower central series converges to zero
in a finite number of steps. Yet the most natural setup for the nilpotency condi-
tion is that of coalgebras rather than algebras, as it allows for infinitary, or “ind”-
conilpotency [32, 15]. Thus it appears that the maximal natural generality for “an al-
gebraist’s version of rational homotopy theory” is that of an equivalence between the
categories of nonnegatively cohomologically graded conilpotent Lie DG-coalgebras
and positively cohomologically graded commutative DG-algebras, considered up to
quasi-isomorphism over a field of characteristic 0.
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Here the commutative DG-algebra computes the cohomology algebra of the would-
be topological space, while the conilpotent Lie DG-coalgebra is, roughly speaking,
dual to the derived rational completion of its homotopy groups with their Whitehead
bracket (notice the passage to the dual coalgebra in the completion construction of
Theorem 1.2 and [33, Remark 5.6]). A Lie DG-coalgebra is called conilpotent if its
underlying graded Lie (super)coalgebra is conilpotent; a nonnegatively graded Lie
supercoalgebra is conilpotent if it is a union of dual coalgebras to finite-dimensional
nilpotent nonpositively graded Lie superalgebras; and a finite-dimensional nonposi-
tively graded Lie superalgebra is nilpotent if its degree-zero component is nilpotent
Lie algebra and its action in the components of other degrees is nilpotent. (See [33,
Section 8| and [34, Section D.6.1] for a discussion of conilpotent Lie coalgebras and
their conilpotent coenveloping coalgebras.)

In this section, we make yet another algebraic generalization/simplification and
replace the pair of dual operads Com-Lie with that of Ass-Ass. In other words,
we consider a noncommutative version of the above-described theory with commu-
tative DG-algebras replaces by associative ones and conilpotent Lie DG-coalgebras
replaced by conilpotent coassociative ones. In this setting, the characteristic 0 re-
striction becomes unnecessary and one can work over an arbitrary ground field k.
Thus our aim is to construct an equivalence between the categories of nonnegatively
cohomologically graded conilpotent (coassociative) DG-coalgebras and positively co-
homologically graded (associative) DG-algebras.

Let C* be a nonzero DG-coalgebra over a field k; suppose that it is endowed
with a coaugmentation (DG-coalgebra morphism) & — C* and denote the quotient
DG-coalgebra (without counit) by C'% = C*/k. By the definition, the cobar construc-
tion Cob*(C*) of a coaugmented DG-coalgebra C* is the free associative algebra

Cob(C) = @, Cy[-1]%"

generated by the graded vector space C';[—1] obtained by shifting by —1 the coho-
mological grading of the coaugmentation cokernel C,. The grading on Cob(C) is
induced by the grading of C'; [—1]. Alternatively, one can define the cobar construc-
tion Cob(C) as the direct sum of the tensor powers C¢" of the vector space C; and
endow it with the total grading equal to the sum ¢ + n of the grading ¢ induced by
the grading of C'; and the grading n by the number of tensor factors.

The differential on Cob®(C*) is the sum of two summands d+0, the former of them
induced by the differential on C and the latter one by the comultiplication in Cf.
One has to work out the plus/minus signs in order to make the total differential on
Cob*(C*) square to zero (cf. the definition of the bar construction in Section 2).

A quasi-isomorphism of augmented DG-algebras A* — B® induces a quasi-
isomorphism of their bar constructions Bar®(A®*) — Bar®(B*) (as one can see from
the filtration and the Eilenberg—Moore spectral sequence discussed in Section 2).
However, the morphism of cobar constructions Cob®(C*) — Cob®(D*) induced by
a quasi-isomorphism of coaugmented (even conilpotent) DG-coalgebras C* — D*
may not be a quasi-isomorphism (see Remark 3.6 at the end of this section). The

18



reason is that the filtration of the bar construction by the number of tensor factors is
an increasing one, while the similar filtration of the cobar construction is a decreasing
one (cf. the discussion of two kinds of differential Cotor functors in [9], [17], and [34,
Section 0.2.10]).

As we are interested in the cobar construction as defined above (i. e., the direct sum
of the tensor powers of C'}[—1]) rather than its completion by this filtration (which
would mean the direct product of such tensor powers), the related spectral sequence
can be viewed as converging to the cohomology of the cobar construction only when
it is in some sense locally finite. This includes two separate cases considered below,
which roughly correspond to the “conilpotent” and “simply connected” versions of
noncommutative homotopy theory as discussed above.

The conilpotent version of the theory, which is of primary interest to us, is based
on the following assertion (which does not yet presume conilpotency, but it will be
needed further on).

Proposition 3.1. Let C* = (C' - C' - C* — ---) and D* = (D° —
D' — D? — ...) be two nonnegatively cohomologically graded coaugmented
DG-coalgebras. Then any comultiplicative quasi-isomorphism f: C* — D*®, i. e.,
a morphism of DG-coalgebras inducing an isomorphism H*(C*) ~ H*(D*®) of their
cohomology coalgebras, induces a quasi-isomorphism of the cobar constructions

Cob*(f): Cob*(C*) — Cob*(D*).

Proof. For any coaugmented DG-coalgebra E°, set GP Cob®(E*) = @, E,[-1]*".
This is a decreasing filtration of the DG-algebra Cob®*(E*®) compatible with the
multiplication and the differential. Clearly, a quasi-isomorphism of coaugmented
DG-coalgebras C* — D*® induces a quasi-isomorphism of the associated graded
algebras gr. Cob®*(C*) — gr, Cob®(D*®). It remains to observe that when the
DG-coalgebras C* and D*® are nonnegatively cohomologically graded, the filtrations
G* on Cob*(C*) and Cob®(D*) are finite at every (total) cohomological degree. In-
deed, one has G"™! Cob"(C*®) = 0 = G"™! Cob"(D*) for every integer n. O

A coaugmented DG-coalgebra C* is called conilpotent if its underlying coaug-
mented (graded) coalgebra is conilpotent (see Section 1 for the definition). The
cobar construction Cob®(C*) of a coaugmented DG-coalgebra C* is naturally an aug-
mented DG-algebra; and the bar construction Bar®(A*) of an augmented DG-algebra
A* is naturally a conilpotent DG-coalgebra.

The two constructions C* — Cob®(C*) and A®* — Bar®(A*), viewed as functors
between the categories of augmented DG-algebras and conilpotent DG-coalgebras, are
adjoint functors: for any conilpotent DG-coalgebra C'* and augmented DG-algebra
A*, there is a bijective correspondence between morphisms of augmented DG-algebras
Cob*(C*) — A* and morphisms of coaugmented DG-coalgebras C* — Bar®(A*).
The proofs of these results, as well as of the following ones, can be found, e. g., in [35,
Section 6.10] (see also [17, Sections I1.3-4] and [15, Section 3]).

Proposition 3.2. (a) For any augmented DG-algebra A®, the adjunction morphism
Cob®*(Bar®*(A*)) — A* is a quasi-isomorphism of augmented DG-algebras.
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(b) For any conilpotent DG-coalgebra C*, the adjunction morphism C® —
Bar®*(Cob*(C*)) is a quasi-isomorphism of (conilpotent) DG-coalgebras.

Warning: the assertion of part (b) does not hold without the conilpotency assump-
tion on C*, and in fact, the adjunction morphism does not even exist without this
assumption (cf. Remark 4.5 below).

Proof. Part (a): define an increasing filtration on a DG-algebra A® by the rules Fy A =
k and F,,A = A for n > 1. This filtration is compatible with the multiplication on
A*, and so it induces a filtration F' compatible with the comultiplication on Bar®(A*®),
and further, a filtration F' compatible with the multiplication on Cob®(Bar®(A*®)) as
well as with the adjunction morphism Cob®*(Bar®(A®*)) — A®. The passage to the
associated graded DG-(co)algebras with respect to the filtration F' gets rid of all the
information about the multiplication in A*; so the DG-algebra gr’’ A* is obtained
from the DG-algebra A*® by setting the multiplication on A% to be zero, and the
DG-algebra gr” Cob®(Bar®(A*)) is the cobar-construction of the bar-construction of
the DG-algebra gr” A*. From this point one can proceed further and rid oneself also
of the differential on A® in addition to the multiplication; but this is unnecessary. It
suffices to notice that the component of degree n of the complex gr’” Cob®(Bar®(A*))
with respect to the grading by the indices of the filtration F' is the total complex of a
bicomplex composed of 2"~ copies of the complex A%". Proving that such complexes
are acyclic for n > 2 is elementary combinatorics.

Part (b): the argument dual to the one in part (b) is not immediately appli-
cable, as the related filtration G on the DG-coalgebra C* and the induced filtra-
tions on its cobar and bar constructions would be decreasing ones. Instead, con-
sider the canonical increasing filtration N,,,C* = ker(C* — C$™"') on the conilpo-
tent DG-coalgebra C*. The associated graded DG-coalgebra gr’¥ Bar®(Cob®(C*)) of
the DG-coalgebra Bar®(Cob®(C*)) by the increasing filtration induced by the filtra-
tion NV on C* is identified with the DG-coalgebra Bar®(Cob®(gr” C*)). This reduces
the question to the case of the DG-coalgebra gr™ C*, which endowed with an ad-
ditional positive grading by the indices of the filtration N. Now one endows the
DG-coalgebra gr¥ C* with the decreasing filtration G with G°gr¥ C* = grV C*,
the component G' gr™ C* being the kernel of the counit map gr’¥ C* — k, and
G"gr¥ C* = 0 for n > 2. The induced decreasing filtration G' on the DG-coalgebra
Bar*(Cob*(gr’¥ C*)) is locally finite in the grading by the indices m of the filtra-
tion N. This reduces the question to proving that the morphism of DG-coalgebras
grg eV C* — Bar®(Cob®(grs gr™ C*)) is a quasi-isomorphism, which can be done
by a combinatorial argument similar to the one in part (a). O

We recall that an augmented DG-algebra A® is called positively cohomologically
graded if its augmentation ideal is concentrated in the positive cohomological de-
grees, that is A%, = 0 for all ¢ < 0. Equivalently, a DG-algebra A* is positively
cohomologically graded if A® = 0 for all i < 0 and A° is a one-dimensional vector
space generated by the unit element of A; any such DG-algebra A® has a unique
augmentation (DG-algebra morphism) A* — k.
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Theorem 3.3. The functors A* — Bar®*(A*) and C* —— Cob®*(C*) induce mu-
tually inverse equivalences between the category of positively cohomologically graded
DG-algebras A* with quasi-isomorphisms inverted and the category of nonnegatively
cohomologically graded conilpotent DG-coalgebras C* with quasi-isomorphisms in-
verted.

Proof. Having in mind the results of Propositions 3.1 and 3.2, it suffices to notice that
the bar construction takes positively cohomologically graded augmented DG-algebras
to nonnegatively cohomologically graded conilpotent DG-coalgebras, while the cobar
construction takes nonnegatively cohomologically graded coaugmented DG-coalge-
bras to positively cohomologically graded augmented DG-algebras. U

For comparison, let us now present the simply connected version of the theory, that
is the direct noncommutative analogue of “the algebraic part” of [40, Theorem I]. A
coaugmented DG-coalgebra C'* is called negatively cohomologically graded if its coaug-
mentation cokernel C'Y is concentrated in the negative cohomological degrees, that is
C". =0 for all i > 0. Clearly, any negatively cohomologically graded DG-coalgebra
is conilpotent. Let us call a negatively cohomologically graded DG-coalgebra simply
connected if C~' =0, 1. e, C, =0 forall i > —1.

Proposition 3.4. Any quasi-isomorphism f: C* — D*® between two simply con-
nected negatively cohomologically graded DG-coalgebras C* = (--+ — C™3 — C72 —
0—k)and D*=(---— D3 — D2 — 0 — k) induces a quasi-isomorphism of the
cobar constructions Cob®(f): Cob*(C*) — Cob*(D*).

Proof. The argument is similar to the proof of Proposition 3.1. Once again, one
observes that the decreasing filtrations G' on the cobar constructions Cob*(C*) and
Cob*(D*) are finite at every cohomological degree in our assumptions. Indeed, one
has G"*1 Cob™(C*) = 0 = G"*! Cob™"(D*) for every integer n. O

An augmented DG-algebra A* is called negatively cohomologically graded if one has
AizOforalli}O.

Theorem 3.5. The functors A* — Bar®*(A*) and C* —— Cob®(C*) induce mutu-
ally imverse equivalences between the category of negatively cohomologically graded
augmented DG-algebras A® with quasi-isomorphisms inverted and the category of
simply connected negatively cohomologically graded DG-coalgebras C* with quasi-
1somorphisms inverted.

Proof. Here one has to notice that the bar construction takes negatively cohomologi-
cally graded augmented DG-algebras to simply connected negatively cohomologically
graded DG-coalgebras, while the cobar construction takes simply connected nega-
tively cohomologically graded DG-coalgebras to negatively cohomologically graded
augmented DG-algebras. Otherwise the argument is similar to the proof of Theo-
rem 3.3 and based on the result of Proposition 3.4. O

Remark 3.6. The assertions of the above theorems can be modified so as to hold

for arbitrary augmented DG-algebras and conilpotent DG-coalgebras. One just has
21



to replace the class of quasi-isomorphisms of DG-coalgebras with a finer class of
filtered quasi-isomorphisms of conilpotent DG-coalgebras, which are to be inverted
in order to obtain a category equivalent to the category of augmented DG-algebras
with quasi-isomorphisms inverted (see [15, Section 4] or [35, Section 6.10]). In the
form stated above, on the other hand, the assertions of the theorems do not hold
already for the negatively cohomologically graded DG-coalgebras that are not sim-
ply connected—in fact, this is the class of DG-coalgebras for which the difference
between quasi-isomorphisms and filtered quasi-isomorphisms becomes essential. It
suffices to consider a morphism between two different augmented k-algebras (viewed
as DG-algebras concentrated in cohomological degree zero) A — B inducing an
isomorphism of the Tor spaces Tor?(k, k) ~ Tor?(k, k). Then the induced morphism
of the bar constructions Bar®(A) — Bar®*(B) is a quasi-isomorphism of negatively
cohomologically graded conilpotent DG-coalgebras that is transformed by the co-
bar construction into a morphism of DG-algebras Cob®*(Bar®*(A)) — Cob*(Bar®*(B))
with two different cohomology algebras A and B [35, Remark 6.10].

4. K(m,1)-NESS + QUASI-FORMALITY IMPLY KOSZULITY

We refer for the definitions of the bar construction Bar®(A®) of an augmented
DG-algebra A* to Section 2 and of the cobar construction Cob*(C*) of a coaugmented
DG-coalgebra C* to Section 3. The definition of the cobar construction Cob*(D) of a
coalgebra D was given previously in Section 1; and the definition of the conilpotency
property of a coalgebra C' can be found in the same section.

The construction of the (tensor) Massey operations on the cohomology algebra of
an augmented DG-algebra A*, understood as the higher differentials in the algebraic
Eilenberg—Moore spectral sequence (associated with a natural increasing filtration on
the bar-complex Bar®(A*®)), was introduced and discussed in Section 2. An augmented
DG-algebra A* is called quasi-formal if all these Massey operations vanish.

Finally, we recall that a graded algebra H* over a field k is called Koszul if it is
concentrated in the positive degrees, that is H* = 0 for i« < 0 and H° = k, and its
bigraded Tor coalgebra (computed by the internally graded DG-coalgebra Bar®(H*))
is concentrated in the diagonal grading, i. e., Torg*(k, k) =0 for i # j.

Let A*® be an augmented DG-algebra over a field k. We will say that a DG-algebra
A* is of the K (m, 1) type (or just simply “a K (m, 1)) if there exists a conilpotent coal-
gebra C' over k such that the DG-algebra A® can be connected with the DG-algebra
Cob*(C) by a chain of quasi-isomorphisms of augmented DG-algebras. Here the
(arbitrary coassociative and counital) conilpotent coalgebra C' plays the role of the
conilpotent coenveloping coalgebra of the conilpotent Lie coalgebra of a k-complete
fundamental group 7; so one could as well write “A* = K(C,1)”.

The connection between Koszulity and the Massey operation vanishing was first
pointed out by Priddy in [39, Section 8] (cf. [24]). In our language, the result of [39,
Proposition 8.1] can be reformulated as follows. We refer to [32, Section 2] for the

background material about positively graded coalgebras.
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Theorem 4.1. Let C = k& Cy & Cy & C3 & --- be a positively graded coalgebra
cogenerated by its first-degree component Cy over a field k, and let A* = Cob®(C') be
the cobar DG-algebra of C. Then the graded coalgebra C is Koszul if and only if the
differentials dy?,: B} — E;’_ql_ P2

(H*(A)20)0 s HI7¥2(A7)
in the Eilenberg—Moore spectral sequence of the DG-algebra A® vanish for p > 3.

Proof. By [32, Propositions 1 and 2], a positively graded coalgebra C' cogenerated by
its first-degree component is Koszul if and only if its cohomology algebra Exty.(k, k) =
H*(A*) is generated by Extj(k, k) = H'(A*). Hence it remains to apply part (a) of
the following proposition. (Notice also that, by [32, Proposition 3], a coalgebra C' is
Koszul if and only if the algebra H*(A*) is Koszul.) O

Proposition 4.2. Let A* = Cob*(C) be the cobar DG-algebra of a conilpotent coal-
gebra C. Then

(a) the cohomology algebra H*(A*) is multiplicatively generated by H'(A®) if and
only if the differentials d7%,: B9 — El];’_ql_p *2 vanish for p > 3;

(b) the cohomology algebra H*(A*) is quadratic if and only if the differentials d)?
as well as the differentials dgfi’q: ngll’q — Ef);ql_pH

(H* (AT ———s (H*(A%) ® H*(AT))77
vanish for p > 3.

Proof. Part (a): if the algebra H*(A*) is multiplicatively generated by H', then
Ey" = Torf;(A.)(k, k) = 0 for all n > 2; since one also has E}? = (H*(A®*)®P)?1 = 0
for all p > ¢, it follows that the differentials d?; vanish for p > 3.

Conversely, by Proposition 3.2(b) the DG-coalgebra Bar®(A*®) is quasi-isomorphic
to C, so EPY = grg HP~4Bar*(A*) = 0 for p # ¢, and in particular EL™" = 0 for
n > 2. This is the situation which people colloquially describe as “the cohomology
H*(A*) is generated by H'(A®) using Massey products”. If all the differentials d?
landing in E}" vanish for r > 2, it follows that E,™ = 0 for n > 2, so H*(A*) is
generated by H' using the conventional multiplication.

Part (b): we can assume that the algebra H*(A®) is generated by H'. If this
algebra is also quadratic, then EQM = Torg;(A.)(k;, k) = 0 for all n > 3, so it follows
that the differentials dgﬂ’q vanish for p > 3. Conversely, as we explained above,
Egon = 0 for n > 3, so if all the differentials landing in Ef” vanish for r > 2, then we
can conclude that E;™ = 0 for n > 3. U

In the nonhomogeneous conilpotent setting we are working in, the implication
“K(m,1)-ness + quasi-formality imply Koszulity” becomes a bit more complicated
than in Theorem 4.1, as the cohomology algebra H*(A*) = H* Cob*(C) being gener-
ated by H' no longer implies it being Koszul (cf. the final paragraphs of Section 2).
The following theorem is the main result of this paper.
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Theorem 4.3. The cohomology algebra H* = H*(A*) of an augmented DG-algebra
A* is Koszul if and only if the augmented DG-algebra A® is simultaneously quasi-
formal and of the K(m,1) type.

Proof. 1t was explained in Section 2 that Koszulity of the cohomology algebra H*(A*)
implies vanishing of the Massey products. The assertion that A® isa K (m, 1) whenever
H*(A*®) is Koszul, announced in the title of Section 1, was not actually proven there
(in our present setting) but rather postponed; so we have to prove it now. We start
with the following lemma.

Lemma 4.4. Let A* be an augmented DG-algebra whose cohomology algebra H*(A*®)
15 concentrated in the positive cohomological degrees. Then there exists a positively co-
homologically graded DG-algebra P* together with a quasi-isomorphism of augmented
DG-algebras P* — A°.

Proof. The construction of a cofibrant resolution of the DG-algebra A® in the con-
ventional model structure on the category of augmented DG-algebras (see [14], [18],
or [35, Section 9.1]) provides the desired DG-algebra P*. One starts from a free
graded algebra with generators corresponding to representative cocycles of a chosen
basis in H*(A% ), and then iteratively adds to it new free generators whose differentials
kill the cohomology classes annihilated by the morphism into A°. 0

Thus we can assume our DG-algebra A® to be positively cohomologically graded;
then its bar construction Bar®(A®) is nonnegatively cohomologically graded. Now if
the cohomology algebra H*(A*®) is Koszul, then it follows from the Eilenberg—Moore
spectral sequence that the cohomology coalgebra H* Bar®(A*) of the DG-coalgebra
Bar*(A*) is concentrated in cohomological degree 0.

Hence the embedding C' — Bar®(A*) of the subcoalgebra C' = ker(d®: Bar®(A*) —
Bar'(A°*)) of the DG-coalgebra Bar®(A*®) is a quasi-isomorphism. By Proposition 3.1,
the induced morphism of the cobar constructions Cob®(C') — Cob®(Bar®(A*)) is
a quasi-isomorphism, too. By Proposition 3.2(a), so is the adjunction morphism
Cob*(Bar*(A®)) — A°®. Finally, the coalgebra C' is conilpotent, since its ambient
DG-coalgebra Bar®(A*) is. We have shown that the DG-algebra A® is a K(7,1).

Now suppose, as the title of this section suggests, that the augmented DG-algebra
A* is a K(m,1) and the Massey products in its cohomology algebra H*(A*) vanish.
Then the augmented DG-algebra A*® is connected by a chain of quasi-isomorphisms
with the DG-algebra Bar®*(C') for a certain conilpotent coalgebra C; we can sim-
ply assume that A* = Cob*(C). In particular, the cohomology algebra H*(A*) is
concentrated in the positive cohomological degrees.

Applying Proposition 3.2(b), we can conclude that the DG-coalgebra Bar®(A*) is
quasi-isomorphic to C, so its cohomology coalgebra H* Bar®(A*) is concentrated in
cohomological degree 0. On the other hand, the Massey product vanishing means

that one has E}?Y = EP! in the Eilenberg-Moore spectral sequence. As EP? =
gri HTP Bar®(A®) = 0 for p # ¢, it follows that E? = Torg;(A.)(k, k) = 0. We
have proven that the cohomology algebra H*(A*) is Koszul. O

24



Remark 4.5. Applying the cobar and bar constructions to a nonconilpotent
coaugmented coalgebra D produces a conilpotent DG-coalgebra Bar®(Cob*(D))
with the zero-degree cohomology algebra H°Bar®(Cob®(D)) isomorphic to the
maximal conilpotent subcoalgebra C' = Nilp D of the coaugmented coalgebra D
(see Section 1 for the definitions and notation here and below). The DG-coalgebra
Bar*(Cob®(D)) can be called the DG-coalgebra of derived conilpotent completion
of a coaugmented coalgebra D. The DG-algebra Cob*(D) is a K(m,1) (i. e., the
cohomology coalgebra of the DG-coalgebra Bar®(Cob®*(D)) is concentrated in coho-
mological degree 0) if and only if the embedding C' — D induces a cohomology
isomorphism Extf (k, k) ~ Ext},(k, k).

Similarly, applying the cobar and bar constructions to an augmented algebra R pro-
duces a conilpotent DG-coalgebra Bar®*(Cob®*(R)) with the zero cohomology algebra
H°Bar*(Cob*(R)) isomorphic to the coalgebra of pronilpotent completion C' = R of
the augmented DG-algebra R. The DG-coalgebra Bar®*(Cob®(R)) can be called the
DG-coalgebra of derived pronilpotent completion of an augmented algebra R. The
DG-algebra Cob®*(R) is a K(m, 1) (i. e., the cohomology coalgebra of the DG-coalgebra
Bar®(Cob*(R)) is concentrated in cohomological degree 0) if and only if the natural
map of the cohomology algebras Extr (k, k) — Exty(k, k) is an isomorphism. These
are noncommutative analogues of the procedure of rational completion of the space
K(I',1) with a discrete group I' in rational homotopy theory.

These observations show, in particular, how to deduce the assertions of Theo-
rems 1.1 and 1.2 from the “Koszulity implies K (7, 1)-ness” claim in Theorem 4.3.

5. KoszurLity DoOES NoT IMPLY FORMALITY

Examples of quasi-formal DG-algebras that are not formal are well known in the
conventional (commutative) rational homotopy theory [13, Examples 8.13]. In this
section we, working in the noncommutative homotopy theory of Section 3, over a
field of prime characteristic, present a series of counterexamples of quasi-formal,
nonformal DG-algebras with Koszul cohomology algebras. We also present a family of
commutative DG-algebras with the similar properties defined over an arbitrary field
(of zero or prime characteristic).

Recall that a DG-algebra A® is called formal if it can be connected by a chain of
quasi-isomorphisms of DG-algebras with its cohomology algebra H*(A*), viewed as
a DG-algebra with zero differential (cf. Section 2). The following lemma shows that
there is no ambiguity in this definition as applied to DG-algebras with the cohomology
algebras concentrated in the positive cohomological degrees. We refer to Section 3
for a short discussion of positively cohomologically graded DG-algebras.

Lemma 5.1. Let A* and B*® be two augmented DG-algebras with the cohomology
algebras concentrated in the positive cohomological degrees, connected by a chain of
quasi-isomorphisms of DG-algebras over a field k. Then there exists a positively
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cohomologically graded DG-algebra P* together with two quasi-isomorphisms of aug-
mented DG-algebras P* — A® and P* — B*®. In particular, the chain of quasi-
isomorphisms between the DG-algebras A* and B® can be made to consist of aug-
mented quasi-isomorphisms of augmented DG-algebras.

Proof. Tt suffices to choose a positively cohomologically graded cofibrant model of
either DG-algebra A® or B*® in the role of P* (see Lemma 4.4). O

Recall that any DG-algebra A® with a Koszul cohomology algebra H*(A®) is “a
K(m,1)”, 1. e., admits a quasi-isomorphism Cob®(C') — A*® from the cobar construc-
tion of a conilpotent coalgebra C' (see Theorem 4.3 and its proof). The conilpotent
coalgebra C' can be recovered as the degree-zero cohomology coalgebra of the bar
construction of the DG-algebra A*, i. e., C' = H" Bar®(A*).

Let N,,C = ker(C — (C/k)®™*1) denote the canonical increasing filtration on
a conilpotent coalgebra C' (see the definition in Section 1; cf. the proof of Proposi-
tion 3.2(b)). The filtration N is compatible with the comultiplication on C, so the
associated graded vector space gr’¥ C' = @, N,,C'/N,,_1C is endowed with a natural
coalgebra structure. The following theorem characterizes those DG-algebras with
Koszul cohomology algebras that are not only quasi-formal but actually formal.

Theorem 5.2. Let A* be an augmented DG-algebra with a Koszul cohomology algebra
H*(A*). Then the DG-algebra A* is formal if and only if the conilpotent coalgebra
C = H°Bar(A*) is isomorphic to its associated graded coalgebra gr’¥ C with respect
to the canonical increasing filtration N.

Proof. By (the proof of) Theorem 4.3, the DG-coalgebra Bar(A*) is quasi-isomorphic
to its degree-zero cohomology coalgebra C'. The coalgebra C is conilpotent, and
its cohomology algebra Ext(. (k, k) = H* Cob®(C), being isomorphic to the algebra
H*(A*), is Koszul. By [32, Main Theorem 3.2], it follows that the graded coalgebra
gr¥ C is Koszul and quadratic dual to H*(A*). By the definition of a Koszul graded
coalgebra, there is a natural quasi-isomorphism Cob®(gr" C') — H*(A*).

Hence, whenever the coalgebras C' and gr’¥ C' are isomorphic, the DG-algebras
A* and H*(A®) are connected by a pair of quasi-isomorphisms Cob®*(C) — A*
and Cob*(C) — H*(A*). Conversely, suppose that there is a chain of quasi-
isomorphisms of DG-algebras connecting A* with H*(A*). By Lemma 5.1, this can
be assumed to be a chain of quasi-isomorphisms of augmented DG-algebras. Apply-
ing the bar construction, we obtain a chain of comultiplicative quasi-isomorphisms
connecting the DG-coalgebras Bar*(A*) and Bar®*(H*(A*)). It follows that the degree-
zero cohomology coalgebras H? Bar®(A®) = C and H? Bar®*(H*(A*)) = gr™ C of these
two DG-coalgebras are isomorphic. O

The following series of examples [36, Section 9.11] provides a negative answer to a
question of Hopkins and Wickelgren [16, Question 1.4].

Example 5.3. Let [ be a prime number and GG be a profinite group; denote by
G the maximal quotient pro-l-group of G. Let k be a field of characteristic [;

then the k-vector space D = k(G) of locally constant k-valued functions on G is
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endowed with a natural structure of coalgebra over k£ with respect to the convolution
comultiplication. We will call this coalgebra the group coalgebra of a profinite group
G over a field k. The maximal conilpotent subcoalgebra C' = Nilp D C D is naturally
identified with the group coalgebra k(G®") of the pro-l-group G. The cohomology
map H*(GW k) — H*(G,k) is known to be an isomorphism, at least, whenever
either the cohomology algebra H*(G, k) is Koszul [33, Corollary 5.5], or G = G is
the absolute Galois group of a field F' containing a primitive [-root of unity [42].
Let [ # p be two prime numbers and F' be a finite extension of the field of p-adic
numbers Q,, or the field of formal Laurent power series F,((z)) with coefficients in
the prime field F,. Assume that the field F' contains a primitive l-root of unity if [ is
odd, or a square root of —1 if [ = 2. In other words, the cardinality ¢ of the residue
field f = Op/mp of the field F' should be such that ¢ — 1 is divisible by [ if [ is odd

and by 4 if [ = 2. Then the maximal quotient pro-I-group G%l) of the absolute Galois
group G is isomorphic to the semidirect product of two copies of the group of [-adic
integers Z; with one of them acting in the other one by the multiplication with q.

So, in the exponential notation, the group H = G%) is generated by two symbols
s and t with the relation sts~! = t4, or, redenoting s = 1 + 2z and t = 1 + y and
recalling that we are working over a field of characterictic [,

Q+2)1+y)(l+z) " (1+y) = 1+H)T for [ odd, or
Q+z)(l+y)1+2) " A+y) " =0+yHT  forl=2

This is a single nonhomogeneous quadratic relation of the type (2) defining the
conilpotent group coalgebra C' = k(H). The quadratic principal part (3) of this
relation is simply zy — yz = 0; this defines the associated graded coalgebra gr’¥ C,
which turns out to be the symmetric coalgebra in two variables.

Alternatively, one can easily compute the cohomology algebra H*(H, k) =~
H*(GF, k) to be the exterior algebra in two generators of degree 1; then the graded
coalgebra gr” C is recovered as the quadratic dual. Either way, the coalgebra gr'V (' is
cocommutative and the coalgebra C' is not (as the group H is not commutative), so C
cannot be isomorphic to gr™ C. Applying Theorem 5.2, we conclude that the cochain
DG-algebra Cob®(C') of the pro-l-group H is not formal. The cochain DG-algebra
Cob*(D) = Cob*(k(GF)) of the absolute Galois group G, being quasi-isomorphic to
the DG-algebra Cob®(C') via the natural quasi-isomorphism Cob*(C) — Cob*(D)
induced by the embedding of coalgebras C' — D, is consequently not formal, either.

(7)

We are not aware of any example of a field F' containing all the [-power roots
of unity (that is, all the roots of unity of the powers [", n > 1) whose cochain
DG-algebra Cob*(Z/l(GF)) over the coefficient field Z /I is not formal. In particular,
if would be interesting to know if there is a field I’ containing an algebraically closed
subfield such that the DG-algebra Cob*(Z/I(GF)) is not formal for some prime .
Our expectation is that such fields do exist, but we cannot pinpoint any.

The following family of examples of nonformal commutative DG-algebras over an
arbitrary field is obtained by a slight modification of Example 5.3.
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Example 5.4. Consider a single nonhomogeneous quadratic Lie relation of the
type (2) for two variables = and y

(8> [x,y]—i—qg(x?y)+q4(x,y)+q5(x,y)+---:0,

where ¢, are homogeneous Lie expressions of degree n in the variables x and y over
a field k. The relation (8) can be viewed as defining a pronilpotent Lie algebra L,
or its dual conilpotent Lie coalgebra, or its conilpotent coenveloping coalgebra C| or
its dual topological associative algebra, which is simply the quotient algebra of the
algebra of noncommutative formal Taylor power series in the two variables x, y by
the closed ideal generated by the single power series (8).

The homogeneous part (3) of the relation (8) has the form [z,y] = 0, and the
relation (8) is self-consistent, i. e., the associated graded coalgebra gr’¥ C is in-
deed the symmetric coalgebra in two variables defined by zy — yz = 0 (and not
a smaller coalgebra). One can check this, e. g., by a trivial application of the Di-
amond Lemma [6] for noncommutative power series (the single relation (8) starts
with xy, so there are no ambiguities to resolve). The graded coalgebra gr’ C is
Koszul, so H*(C) ~ H*(gr™ C) is the exterior algebra in two generators of degree 1.

Now setting A* = (A(L*),d) to be the Chevalley-Eilenberg complex of the
profinite-dimensional Lie algebra L (i. e., the inductive limit of the Chevalley-
Eilenberg cohomological complexes of the finite-dimensional quotient Lie algebras of
L by its open ideals), one obtains a commutative DG-algebra endowed with a natural
quasi-isomorphism Cob®(C') — A*® from the cobar construction of the coalgebra C'.
The cohomology algebra H*(A®) is the exterior algebra in two generators of degree 1,
while the bar construction Bar®(A*) is quasi-isomorphic to C. So the commutative
DG-algebra A* cannot be connected with its cohomology algebra H*(A®) by a chain
of quasi-isomorphisms, even in the class of noncommutative DG-algebras, unless the
coalgebra C is isomorphic to gr’¥ C'. The latter would mean that C' is cocommutative,
which only happens when all the Lie forms ¢, (z,y) vanish for n > 3.
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