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Abstract. We construct the reduction of an exact category with a twist functor
with respect to an element of its graded center in presence of an exact-conservative
forgetful functor annihilating this central element. The construction uses matrix
factorizations in a nontraditional way. We obtain the Bockstein long exact se-
quences for the Ext groups in the exact categories produced by reduction. Our
motivation comes from the theory of Artin–Tate motives and motivic sheaves with
finite coefficients, and our key techniques generalize those of [4, Section 4].

Introduction

The goal of this paper is to develop a general categorical framework for the following
problem. Let G be a finite group. For any commutative ring k, denote by Fk the
category of representations of G in finitely generated free k-modules. The category
Fk has a natural exact category structure in which a short sequence is exact if and
only if it is exact as a sequence of modules over k[G], or equivalently, split exact
as a sequence of k-modules. Let m = lr be a prime power. How does one recover
the exact category of modular representations FZ/m from the exact category FZl

of
representations of G over the l-adic integers?

Notice that the reduction functor ρ : FZl
−→ FZ/m taking a free Zl-module M with

an action of G to the free Z/m-module ρ(M) = M/mM with the induced action of G
is not surjective on the isomorphism classes of objects. E. g., for m = l2 with an odd
prime l and a cyclic group G = Z/l, the representation of G in a free Z/l2-module
of rank 1 corresponding to a nontrivial character Z/l −→ (Z/l2)∗ cannot be lifted to
a representation of G in a free Zl-module of rank 1. On the other hand, the regular
representation of a finite group G over the residue ring Z/m can, of course, be lifted
to a regular representation of G over the ring Zl.

Neither is the functor ρ surjective on morphisms. Instead, for any two objects M
and N ∈ FZl

there is a natural Bockstein long exact sequence

0 −−→ HomFZl
(M,N) −−→ HomFZl

(M,N) −−→ HomFZ/m(ρ(M), ρ(N))

−−→ Ext1FZl
(M,N) −−→ Ext1FZl

(M,N) −−→ Ext1FZ/m
(ρ(M), ρ(N))

−−→ Ext2FZl
(M,N) −−→ Ext2FZl

(M,N) −−→ Ext2FZ/m
(ρ(M), ρ(N)) −−→ · · ·

Moreover, given two prime powers m′ = ls and m′′ = lt with m = m′m′′, there is a
Bockstein long exact sequence

0 −→ HomFZ/m′ (ρ
′(M), ρ′(N)) −→ HomFZ/m(M,N) −→ HomFZ/m′′ (ρ

′′(M), ρ′′(N))
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−→ Ext1FZ/m′ (ρ
′(M), ρ′(N)) −→ Ext1FZ/m

(M,N) −→ Ext1FZ/m′′ (ρ
′′(M), ρ′′(N))

−→ Ext2FZ/m′ (ρ
′(M), ρ′(N)) −→ Ext2FZ/m

(M,N) −→ · · ·

for the reduction functors ρ(i) : FZ/m −→ FZ/m(i) , i = 1, 2, and any two objects M ,
N ∈ FZ/m. We would like to have such long exact sequences coming out from our
categorical formalism of reductions.

Acknowledgement. The author was partially supported by RFBR grants while
working on this project.

1. The Bockstein Sequence

1.0. Notation and terminology. Throughout this paper, by an exact category we
mean an exact category in Quillen’s sense, i. e., an additive category endowed with a
class of short exact sequences satisfying the natural axioms (see, e. g., [2, 3], [1], or [4,
Appendix A]). A sequence of objects and morphisms in an exact category is said to be
exact if it is composed of short exact sequences. A functor between exact categories
is said to be exact if it takes short (or, equivalently, arbitrary) exact sequences in the
source category to short (resp., long) exact sequences in the target one.

A twist functor on a category F is an autoequivalence denoted usually by X 7−→
X(1). The inverse autoequivalence is denoted by X 7−→ X(−1), and the integral
powers of the twist functor are denoted by X 7−→ X(n), n ∈ Z. Twist functors on
exact categories will be presumed to be exact autoequivalences.

Given two categories F and E endowed with twist functors, a functor π : F −→ E
is said to commute with the twists if a functorial isomorphism π(X(1)) ' π(X)(1) is
fixed for all objects X ∈ F . Speaking of a commutative diagram of functors F −→
G −→ E commuting with the twists, we will always presume that the commutation
isomorphisms form commutative diagrams of morphisms.

A morphism of endofunctors t : Id −→ (n), n ∈ Z on a category F with a twist
functor X 7−→ X(1) (i. e., a morphism tX : X −→ X(n) defined for every object
X ∈ F and functorial with respect to all the morphisms X −→ Y in F) is said to
commute with the twist if for any object X ∈ F the equation tX(1) = tX(1) holds in
the set HomF(X(1), X(n+ 1)).

Notice that the endomorphisms of the identity functor on an additive category F
always form a commutative ring, which is called the center of the category F . It is
the universal object among all the commutative rings k for which F can be endowed
with the structure of a k-linear category. Similarly, given an additive category F
with a twist functor X 7−→ X(1), morphisms of endofunctors Id −→ (n) commuting
with the twist form a commutative ring with a Z-grading, which can be called the
graded center of an (additive) category with a twist functor.

We will say that a morphism f : X −→ Y in F is divisible by a natural trans-
formation t : Id −→ (n) commuting with the twist functor X 7−→ X(1) on F if
the morphism f factorizes through the morphism tX : X −→ X(n), or equivalently,
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through the morphism tY (−n) : Y (−n) −→ Y . Similarly, a morphism f : X −→ Y is
annihilated by an element of the graded center t : Id −→ (n) of an additive category
F if the composition X(−n) −→ X −→ Y vanishes, or equivalently, the composition
X −→ Y −→ Y (n) vanishes in F .

An exact functor between exact categories π : F −→ E is called exact-conservative
if it reflects admissible monomorphisms, admissible epimorphisms, and exact se-
quences. In other words, a functor π is said to be exact-conservative if a morphism
in F is an admissible monomorphism or admissible epimorphism, or a sequence in
F is exact, if and only if so is its image with respect to the functor π in the exact
category E . Notice that any exact-conservative functor between exact categories is
conservative in the conventional sense (i. e., reflects isomorphisms).

1.1. Exact surjectivity conditions. Let η : F −→ G be an exact functor between
two exact categories. The following conditions on a functor η will play a key role in
the constructions below in this section:

(i′) for any object X ∈ F and any admissible epimorphism T −→ η(X) in G there
exists an admissible epimorphism Z −→ X in F and a morphism η(Z) −→ T
in G making the triangle diagram η(Z) −→ T −→ η(X) commutative;

(i′′) for any object X ∈ F and any admissible monomorphism η(X) −→ T in G
there exists an admissible monomorphism X −→ Z in F and a morphism
T −→ η(Z) in G making the triangle diagram η(X) −→ T −→ η(Z) commu-
tative;

(ii′) for any objects X, Y ∈ F and any morphism η(X) −→ η(Y ) in G there exists
an admissible epimorphism X ′ −→ X and a morphism X ′ −→ Y in F making
the triangle diagram η(X ′) −→ η(X) −→ η(Y ) commutative in G;

(ii′′) for any objects X, Y ∈ F and any morphism η(X) −→ η(Y ) in G there
exists an admissible monomorphism Y −→ Y ′ and a morphism X −→ Y ′ in
F making the triangle diagram η(X) −→ η(Y ) −→ η(Y ′) commutative in G.

We will say that an exact functor η satisfies the condition (i) if both the dual con-
ditions (i′) and (i′′) hold for it. Similarly, we will say that η satisfies the condition (ii)
if both the dual conditions (ii′) and (ii′′) hold for η.

The proofs of the two parts of the next proposition can be found in [4, Subsec-
tion 4.4] (for a discussion of big graded rings, see [4, Subsection A.1]). We denote
by ηn = ηnX,Y : ExtnF(X, Y ) −→ ExtnG(η(X), η(Y )) the Ext group homomorphisms
induced by an exact functor η : F −→ G.

Proposition 1.1. Let F and G be two exact categories and η : F −→ G be an exact
functor satisfying the condition (i ′). Then

(a) for any objects X, Y ∈ F and W ∈ G, and any Ext classes a ∈ ExtnF(X, Y ) and
b ∈ ExtmG (η(Y ),W ) such that bηn(a) = 0 and m > 1 there exists an object Y ′ ∈ F ,
a morphism f : Y ′ −→ Y in F , and a class a′ ∈ ExtnF(X, Y ′) for which a = fa′ and
bη(f) = 0;

(b) for any object W ∈ G the right graded module (ExtnG(η(X),W ))X∈F ;n>0 over
the big graded ring (ExtnF(X, Y ))Y,X∈F ;n>0 over the set of all objects of F is induced
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from the right module (HomG(η(Y ),W ))Y ∈F over the big subring (HomF(X, Y ))Y,X ⊂
(ExtnF (X, Y ))Y,X;n. �

1.2. Posing the problem. Let Ft, Fs, and Fst be three exact categories endowed
with twist functors (exact autoequivalences) X 7−→ X(1). Suppose that we are given
an exact functor ηt : Fst −→ Ft and an exact-conservative functor ηs : Fst −→ Fs (see
Subsection 1.0 for the definitions), both commuting with the twists. Assume that
both the functors ηt and ηs satisfy the conditions (i-ii) of Subsection 1.1.

Furthermore, suppose that we are given a natural transformation s : Id −→ (1) on
the category Fst commuting with the twist functor (1) : Fst −→ Fst as explained in
Subsection 1.0. We assume the following further conditions to be satisfied:

(iii) a morphism X −→ Y in the category Fst is annihilated by the functor ηt if
and only if it is annihilated by the natural transformation s in Fst;

(iv) a morphism X −→ Y in the category Fst is annihilated by the functor ηs
if and only if there exists an admissible epimorphism X ′ −→ X such that
the composition X ′ −→ X −→ Y is divisible by s in Fst, or equivalently, if
and only if there exists an admissible monomorphism Y −→ Y ′ such that the
composition X −→ Y −→ Y ′ is divisible by s in Fst.

We will see below in Subsection 1.3 that the two dual formulations of the condi-
tion (iv) are equivalent modulo our previous assumptions (specifically, the argument
is based on the condition (ii) for the functor ηt and the condition (iii)).

Our goal in this section is to construct, in the assumption of the conditions (i-iv),
the following Bockstein long exact sequence for the Ext groups

0 −−→ HomFt(ηt(X), ηt(Y )(−1)) −−→ HomFst(X, Y ) −−→ HomFs(ηs(X), ηs(Y ))

−−→ Ext1Ft
(ηt(X), ηt(Y )(−1)) −−→ Ext1Fst

(X, Y ) −−→ Ext1Fs
(ηs(X), ηs(Y ))

−−→ Ext2Ft
(ηt(X), ηt(Y )(−1)) −−→ Ext2Fst

(X, Y ) −−→ · · ·
for any two objects X, Y ∈ Fst. The differentials in this long exact sequence have
the following properties:

(a) the maps ηs = ηns : ExtnFst
(X, Y ) −→ ExtnFs

(ηs(X), ηs(Y )) are induced by the
exact functor ηs : Fst −→ Fs;

(b) the maps s = sn : ExtnFt
(ηt(X), ηt(Y )(−1)) −→ ExtnFst

(X, Y ) satisfy the equa-
tion

si+n+j(η
i
t(a(−1))zηjt (b)) = asn(z)b

for any objects U , X, Y , V ∈ Fst and any Ext classes b ∈ ExtjFst
(U,X),

z ∈ ExtnFt
(ηt(X), ηt(Y )(−1)), and a ∈ ExtiFst

(Y, V );

(c) the maps ∂ = ∂n : ExtnFs
(ηs(X), ηs(Y )) −→ Extn+1

Ft
(ηt(X), ηt(Y )(−1)) satisfy

the equation

∂i+n+j(ηis(a)zηjs(b)) = (−1)iηit(a(−1))∂n(z)ηjt (b)

for any objects U , X, Y , V ∈ Fst and any Ext classes b ∈ ExtjFst
(U,X),

z ∈ ExtnFs
(ηs(X), ηs(Y )), and a ∈ ExtiFst

(Y, V ).
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1.3. The first two terms. We start with constructing the map s0 and verifying
exactness of our sequence at its first two nontrivial terms.

Let X and Y be two objects of the category Fst, and p : ηt(X) −→ ηt(Y )(−1) be
a morphism in the category Ft. According to the condition (ii) for the functor ηt,
there exist an admissible epimorphism X ′ −→ X, an admissible monomorphism
Y (−1) −→ Y ′(−1), and morphisms X ′ −→ Y (−1) and X −→ Y ′(−1) in the cat-
egory Fst whose images under the functor ηt together with the morphism p form a
commutative diagram of two triangles with a common edge in the category Ft.

The square diagram of morphisms X ′ −→ X −→ Y ′(−1), X ′ −→ Y (−1) −→
Y ′(−1) becomes commutative after applying the functor ηt, hence it follows from
the condition (iii) that it is commutative modulo the ideal of morphisms annihilated
by the natural transformation s in the category Fst. Multiplying both morphisms
X −→ Y ′(−1) and X ′ −→ Y (−1) by s, we therefore obtain a commutative square
X ′ −→ X −→ Y ′, X ′ −→ Y −→ Y ′ in the category Fst.

Since the morphism X ′ −→ X is an admissible epimorphism and the morphism
Y −→ Y ′ is an admissible monomorphism, it follows that there exists a unique
morphism f : X −→ Y complementing the latter square to a commutative diagram
of two triangles with a common edge in the category Fst. By the definition, we set
f = s0(p). As the morphisms X ′ −→ X and Y −→ Y ′ can be chosen independently
and the choice of either one of them is sufficient to determine the morphism f , it
does not depend on these choices.

Lemma 1.2. Assuming the condition (ii) for the functor ηt and the condition (iii),
the map s0 : HomFt(ηt(X), ηt(Y )(−1)) −→ HomFst(X, Y ) has the following properties:

(a) the equation s0(ηt(g(−1))pηt(h)) = gs0(p)h holds for any morphisms h : U −→
X, g : Y −→ V in the category Fst and any morphism p : ηt(X) −→ ηt(Y )(−1) in
the category Ft;

(b) the map s0 is injective for any objects X, Y ∈ Fst;
(c) a morphism X −→ Y in the category Fst belongs to the image of the map s0 if

and only if there exists an admissible epimorphism X ′ −→ X such that the composi-
tion X ′ −→ X −→ Y is divisible by the natural transformation s in the category Fst,
and if and only if there exists an admissible monomorphism Y −→ Y ′ such that the
composition X −→ Y −→ Y ′ is divisible by s in Fst.

Proof. In part (a), one checks the equations s0(ηt(g(−1))p) = gs0(p) and s0(pηt(h)) =
s0(p)h separately, using the construction of the morphism s0(p) in terms of an ad-
missible epimorphism X ′ −→ X in the former case and in terms of an admissible
monomorphism Y −→ Y ′ in the latter one. Part (b) holds, since the morphisms
X ′ −→ Y and X −→ Y ′ are annihilated by the functor ηt whenever they are anni-
hilated by the multiplication with the natural transformation s in the category Fst,
according to the condition (iii). The assertions “only if” in part (c) are obvious from
the construction of the map s0; and the prove the “if”, denote by K the kernel of the
morphism X ′ −→ X. Then the composition K −→ X ′ −→ Y (−1) is annihilated by
the multiplication with s, and consequently, according to (iii), it is also annihilated
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by the functor ηt. The short sequence 0 −→ ηt(K) −→ ηt(X
′) −→ ηt(X) −→ 0 being

exact in Ft, one obtains the desired morphism ηt(X) −→ ηt(Y )(−1). �

It follows that the two formulations of the condition (iv) are equivalent in
Subsection 1.2. Assuming this condition, we conclude that the sequence 0 −→
HomFt(ηt(X), ηt(Y )(−1)) −→ HomFst(X, Y ) −→ HomFs(ηs(X), ηs(Y )) is exact.

1.4. The third term. Now we construct the map ∂0 and check exactness of the
sequence at its third term. The construction and arguments largely follow those
in [4, Subsections 4.5–4.6].

Let X and Y be two objects of the category Fst, and q : ηs(X) −→ ηs(Y ) be a
morphism in the category Fs. According to the condition (ii) for the functor ηs,
there exist an admissible epimorphism X ′ −→ X, an admissible monomorphism
Y −→ Y ′, and morphisms X ′ −→ Y and X −→ Y ′ in the category Fst whose images
under the functor ηs together with the morphism q form a commutative diagram of
two triangles with a common edge in the category Fs.

The square diagram of morphisms X ′ −→ X −→ Y ′, X ′ −→ Y −→ Y ′ becomes
commutative after applying the functor ηs, and consequently, according to the con-
dition (iv) and the above discussion, is commutative in the category Fst modulo the
ideal of morphisms coming from morphisms in Ft via the maps s0.

Let K −→ X ′ be the kernel of the morphism X ′ −→ X and Y ′ −→ C be the
cokernel of the morphism Y −→ Y ′ in Fst. Then the compositions K −→ X ′ −→ Y
and X −→ Y ′ −→ C are annihilated by the functor ηs, and therefore come from
morphisms ηt(K) −→ ηt(Y )(−1) and ηt(X) −→ ηt(C)(−1) in the category Ft. The
difference of the two compositions in the square diagram of morphisms in the category
Fst also comes from a certain morphism ηt(X

′) −→ ηt(Y
′)(−1) in the category Ft.

Together with the images of the short exact sequences 0 −→ K −→ X ′ −→
X −→ 0 and 0 −→ Y (−1) −→ Y ′(−1) −→ C(−1) −→ 0 with respect to the func-
tor ηt, these three morphisms form a diagram of two squares, one of which is commu-
tative and the other one anticommutative (as one can check using Lemma 1.2(a-b)).
Such a diagram defines an element of the group Ext1Ft

(ηt(X), ηt(Y )(−1)) in any one
of the two dual ways differing by the minus sign.

Namely, the desired element can be obtained either as the composition of the
Ext1 class of the sequence 0 −→ ηt(K) −→ ηt(X

′) −→ ηt(X) −→ 0 with the
morphism ηt(K) −→ ηt(Y )(−1), or as the composition of the morphism ηt(X) −→
ηt(C)(−1) with the Ext1 class of the sequence 0 −→ ηt(Y )(−1) −→ ηt(Y

′)(−1) −→
ηt(C)(−1) −→ 0 in the exact category Ft. By the definition, we set this element to
be the value ∂0(q) of the map ∂0 : HomFs(ηs(X), ηs(Y )) −→ Ext1Ft

(ηt(X), ηt(Y )(−1))
at the morphism q : ηs(X) −→ ηs(Y ).

Lemma 1.3. Assuming the condition (ii) for the functors ηs, ηt and the condi-
tions (iii-iv), the map ∂0 : HomFs(ηs(X), ηs(Y )) −→ Ext1Ft

(ηt(X), ηt(Y )(−1)) has the
following properties:
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(a) the equation ∂0(ηs(g)qηs(h)) = ηt(g(−1))∂0(q)ηt(h) holds for any morphisms
h : U −→ X, g : Y −→ V in the category Fst and any morphism q : ηs(X) −→ ηs(Y )
in the category Fs;

(b) for any two objects X, Y in the category Fst, the kernel of the map
∂0 : HomFs(ηs(X), ηs(Y )) −→ Ext1Ft

(ηt(X), ηt(Y )(−1)) coincides with the image
of the map ηs : HomFst(X, Y ) −→ HomFs(ηs(X), ηs(Y )).

Proof. To prove part (a), one checks the equations ∂0(ηs(g)q) = ηt(g(−1))∂0(q) and
∂0(qηs(h)) = ∂0(q)ηt(h) separately, using the construction of the element ∂0(q) (as
the product of a morphism and and an Ext1 class in Ft) in terms of an admissible epi-
morphism X ′ −→ X in the former case and in terms of an admissible monomorphism
Y −→ Y ′ in the latter one, together with the result of Lemma 1.2(a).

To prove part (b), consider a morphism q : ηs(X) −→ ηs(Y ) in the category Fs, and
let X ′ −→ X and X ′ −→ Y be an admissible epimorphism and a morphism in the
category Fst whose images under the functor ηs form a commutative diagram together
with the morphism q. Let K −→ X ′ be the kernel of the morphism X ′ −→ X;
according to the above, the composition K −→ X ′ −→ Y comes from a morphism
ηt(K) −→ ηt(Y )(−1) in the category Ft via the map s0.

The class ∂0(q) ∈ Ext1Ft
(ηt(X), ηt(Y )(−1)) is induced from the Ext1 class of the

short exact sequence 0 −→ ηt(K) −→ ηt(X
′) −→ ηt(X) −→ 0 using the morphism

ηt(K) −→ ηt(Y )(−1). Hence one has ∂0(q) = 0 if and ony if the latter morphism
factorizes through the admissible monomorphism ηt(K) −→ ηt(X

′).
Subtracting the image of the related morphism ηt(X

′) −→ ηt(Y )(−1) under the
map s0 from the original morphism X ′ −→ Y in the category Fst, we obtain a new
morphism X ′ −→ Y with the same image under the functor ηs and the additional
property that the composition K −→ X ′ −→ Y vanishes. This allows to lift the
morphism q : ηs(X) −→ ηs(Y ) to a morphism X −→ Y in the category Fst. �

1.5. Construction of higher differentials. The constructions of the maps sn
and ∂n for n > 1 are based on the result of Proposition 1.1(b). We continue to
follow [4, Subsection 4.5].

Lemma 1.4. Assuming the conditions (i-iv), there exists a unique way to extend
the above-defined maps s0 : HomFt(ηt(X), ηt(Y )(−1)) −→ HomFst(X, Y ) to maps
sn : ExtnFt

(ηt(X), ηt(Y )(−1)) −→ ExtnFst
(X, Y ) defined for all objects X, Y ∈ Fst

and all integers n > 0 and satisfying the equations (b) of Subsection 1.2.

Proof. Consider the two equations si+n(ηit(a(−1))z) = asn(z) and sn+j(zη
j
t (b)) =

sn(z)b separately. In view of Proposition 1.1(b) and the dual result, based on the con-
ditions (i′) and (i′′) for the functor ηt, it follows from Lemma 1.2(a) that there exists
a unique collection of maps s′′n : ExtnFt

(ηt(X), ηt(Y )(−1)) −→ ExtnFst
(X, Y ) extending

the maps s0 and satisfying the former system of equations, and also a unique collec-
tion of maps s′n : ExtnFt

(ηt(X), ηt(Y )(−1)) −→ ExtnFst
(X, Y ) extending the maps s0

and satisfying the latter system of equations.
It remains to show that s′n = s′′n; here it suffices to check that s′1 = s′′1. Suppose

that we are given two short exact sequences 0 −→ V −→ P −→ X −→ 0 and
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0 −→ Y −→ Q −→ U −→ 0 in the category Fst representing the Ext1 classes b ∈
Ext1Fst

(X, V ) and a ∈ Ext1Fst
(U, Y ). Suppose further that we are given two morphisms

w : ηt(V ) −→ ηt(Y )(−1) and z : ηt(X) −→ ηt(U)(−1) in the category Ft such that the
equation η1t (a(−1))z = wη1t (b) holds in the group Ext1Ft

(ηt(X), ηt(Y )(−1)). Then the
morphisms w and z can be extended to a morphism of short exact sequences (that is
a diagram of two commutative squares) (ηt(V )→ ηt(P )→ ηt(X)) −→ (ηt(Y )(−1)→
ηt(Q)(−1)→ ηt(U)(−1)) in the category Ft.

Applying the maps s0 to the morphisms w : ηt(V ) −→ ηt(Y )(−1), ηt(P ) −→
ηt(Q)(−1), and z : ηt(X) −→ ηt(U)(−1) in the category Ft, we obtain, in view of
Lemma 1.2(a), a morphism of short exact sequences (V → P → X) −→ (Y → Q→
U) in the category Fst. The commutativity of this diagram of two squares proves the
equation as0(z) = s0(w)b in the group Ext1Fst

(X, Y ). �

Lemma 1.5. Assuming the conditions (i-iv), there exists a unique way to extend the
above-defined maps ∂0 : HomFs(ηs(X), ηs(Y )) −→ Ext1Ft

(ηt(X), ηt(Y )(−1)) to maps

∂n : ExtnFs
(ηs(X), ηs(Y )) −→ Extn+1

Ft
(ηt(X), ηt(Y )(−1)) defined for all objects X, Y ∈

Fst and all integers n > 0 and satisfying the equations (c) of Subsection 1.2.

Proof. As in the proof of Lemma 1.4, we consider the two equations ∂i+n(ηis(a)z) =
(−1)iηit(a(−1))∂n(z) and ∂n+j(zηjs(b)) = ∂n(z)ηjt (b) separately. In view of Proposi-
tion 1.1(b) and the dual result, based on the conditions (i′) and (i′′) for the func-
tor ηs, it follows from Lemma 1.3(a) that there exists a unique collection of maps
′′∂n : ExtnFs

(ηs(X), ηs(Y )) −→ Extn+1
Ft

(ηt(X), ηt(Y )(−1)) extending the maps ∂0 and
satisfying the former system of equations, and also a unique collection of maps
′∂n : ExtnFs

(ηs(X), ηs(Y )) −→ Extn+1
Ft

(ηt(X), ηt(Y )(−1)) extending the maps ∂0 and
satisfying the latter system of equations.

In order to show that ′∂n = ′′∂n for all n > 1, it suffices to check that ′∂1 = ′′∂1. As
in the previous proof, we have two short exact sequences 0 −→ V −→ P −→ X −→ 0
and 0 −→ Y −→ Q −→ U −→ 0 in the category Fst representing the Ext1 classes b ∈
Ext1Fst

(X, V ) and a ∈ Ext1Fst
(U, Y ). We also have two morphisms w : ηs(V ) −→ ηs(Y )

and z : ηs(X) −→ ηs(U) in the category Fs for which the equation η1s (a)z = wη1s (b)
holds in Ext1Fs

(ηs(X), ηs(Y )). Then there is a morphism of short exact sequences
(ηs(V )→ ηs(P )→ ηs(X)) −→ (ηs(Y )→ ηs(Q)→ ηs(U)) in the category Fs.

According to the condition (ii) for the functor ηs, there exists an admissible epimor-
phism X ′ −→ X and a morphism X ′ −→ U in the category Fst whose images under
the functor ηs form a commutative diagram with the morphism ηs(X) −→ ηs(U) in
the category Fs. Denote by P ′′′ the fibered product of the objects P and X ′ over X
in the category Fst. Choose an admissible epimorphism P ′′ −→ P ′′′ and a morphism
P ′′ −→ Q in the category Fst whose images under ηs form a commutative diagram
with the composition of morphisms ηs(P

′′′) −→ ηs(P ) −→ ηs(Q) in Fs.
Consider the difference of the compositions of morphisms P ′′ −→ P ′′′ −→ X −→ U

and P ′′ −→ Q −→ U in the category Fst. It is annihilated by the functor ηs, and
consequently, comes from a morphism ηt(P

′′) −→ ηt(U)(−1) in the category Ft via
the map s0. Denote by T the fibered product of the objects ηt(P

′′) and ηt(Q)(−1)
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over ηt(U)(−1) in the category Ft. The morphism T −→ ηt(P
′′) is an admissible

epimorphism in Ft; hence, according to the condition (i) for the functor ηt, there
exists an admissible epimorphism P ′ −→ P ′′ in the category Fst and a morphism
ηt(P

′) −→ T in the category Ft making the triangle diagram ηt(P
′) −→ T −→ ηt(P

′′)
commutative in Ft.

Applying the map s0 to the composition of morphisms ηt(P
′) −→ T −→ ηt(Q)(−1)

in the category Ft, we obtain a morphism f : P ′ −→ Q entering into a commutative
square of morphisms P ′ −→ Q −→ U and P ′ −→ P ′′ −→ U in the category Fst with
both morphisms P ′′ −→ U and f : P ′ −→ Q being annihilated by the functor ηs.
Define the morphism P ′ −→ P as the composition P ′ −→ P ′′ −→ P ′′′ −→ P ,
the morphism P ′ −→ X ′ as the composition P ′ −→ P ′′ −→ P ′′′ −→ X ′, and the
new morphism P ′ −→ Q as the sum of the composition P ′ −→ P ′′ −→ Q and the
morphism f . Then the square diagram formed by the morphisms P ′ −→ X ′ −→ U
and P ′ −→ Q −→ U is commutative in the category Fst, while the triangle ηs(P

′) −→
ηs(P ) −→ ηs(Q) is commutative in the category Fs.

Let V ′ −→ P ′ be the kernel of the admissible epimorphism P ′ −→ X ′ in the
category Fst. Then there is an admissible epimorphism of short exact sequences
(V ′ → P ′ → X ′) −→ (V → P → X) and a morphism of short exact sequences
(V ′ → P ′ → X ′) → (Y → Q → U) in Fst whose images under the functor ηs
form a commutative triangle with the morphism of short exact sequences (ηs(V ) →
ηs(P )→ ηs(X)) −→ (ηs(Y )→ ηs(Q)→ ηs(U)) in the category Fs. Let 0 −→ K −→
L −→ M −→ 0 be the kernel of the admissible epimorphism (V ′ → P ′ → X ′) −→
(V → P → X) (in the exact category) of short exact sequences in Fst. Then the
composition of morphisms of short exact sequences (K → L→M) −→ (V ′ → P ′ →
X ′) −→ (Y → Q → U) is annihilated by the functor ηs, so, by Lemma 1.2(a-c)
and the condition (iv), it comes from a (uniquely defined) morphism of short exact
sequences (ηt(K) → ηt(L) → ηt(M)) −→ (ηt(Y )(−1) → ηt(Q)(−1) → ηt(U)(−1)) in
the category Ft via the maps s0.

Consider the extension of short exact sequences 0 −→ ηt(V ) −→ ηt(P ) −→
ηt(X) −→ 0 and 0 −→ ηt(K) −→ ηt(L) −→ ηt(M) −→ 0 with the middle term
0 −→ ηt(V

′) −→ ηt(P
′) −→ ηt(X

′) −→ 0 in (the exact category of short exact se-
quences in) the category Ft, and induce from it an extension of the exact sequences
0 −→ ηt(V ) −→ ηt(P ) −→ ηt(X) −→ 0 and 0 −→ ηt(Y )(−1) −→ ηt(Q)(−1) −→
ηt(U)(−1) −→ 0 using the above-constructed morphism of short exact sequences
in Ft. We have obtained a commutative 3×3 square formed by short exact sequences
in the exact category Ft. For any such square, the two Ext2 classes between the ob-
jects at the opposite vertices obtained by composing the Ext1 classes along the perime-
ter differ by the minus sign. This proves the desired equation −a∂0(z) = ∂0(w)b in
the group Ext2Ft

(X, Y (−1)) (cf. [4, Subsection 4.5]). �

1.6. Exactness of the long sequence. Here we largely follow [4, Subsection 4.6].
The argument is based on Proposition 1.1(a). We start with the following lemma, in
whose proof the condition that the functor ηs is exact-conservative (rather than only
exact) will be used for the first time in this section.
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Lemma 1.6. The initial segment

0 −→ HomFt(ηt(X), ηt(Y )(−1)) −→ HomFst(X, Y ) −→ HomFs(ηs(X), ηs(Y ))

−→ Ext1Ft
(ηt(X), ηt(Y )(−1)) −→ Ext1Fst

(X, Y ) −→ Ext1Fs
(ηs(X), ηs(Y ))

of the long sequence that we have constructed is exact for any two objects X and Y
in the category Fst.

Proof. Exactness at the first three nontrivial terms has been proven already in Sub-
sections 1.3–1.4. Let us check exactness at the term Ext1Ft

(ηt(X), ηt(Y )(−1)).
According to Proposition 1.1(b) and the condition (i) for the functor ηt, any el-

ement z in our Ext1 group in the category Ft is equal to the product pη1t (b) of
the image η1s (b) of an Ext1 class b represented by a short exact sequence 0 −→
Y ′ −→ Z ′ −→ X −→ 0 in the category Fst under the functor ηt and a morphism
p : ηt(Y

′) −→ ηt(Y )(−1) in the category Ft.
By the definition, the element s1(z) ∈ Ext1Fst

(X, Y ) is constructed as the composi-

tion s0(p)b of the Ext1 class b and the morphism s0(p) : Y ′ −→ Y in the category Fst.
The equation s1(z) = s0(p)b = 0 means that the morphism s0(p) factorizes through
the morphism Y ′ −→ Z in the category Fst, i. e., there exists a morphism Z ′ −→ Y
in Fst making the triangle Y ′ −→ Z ′ −→ Y commutative.

Applying the functor ηs to the whole diagram in the category Fst, we see that the
morphism ηs(Y

′) −→ ηs(Y ) vanishes, so the morphism ηs(Z
′) −→ ηs(Y ) factorizes

through the admissible epimorphism ηs(Z
′) −→ ηs(X) and there exists a morphism

q : ηs(X) −→ ηs(Y ) in the category Fs making the triangle ηs(Z
′) −→ ηs(X) −→

ηs(Y ) commutative. By the definition, one has ∂0(q) = z.
It remains to check exactness at the term Ext1Fst

(X, Y ). Suppose that the image
of a short exact sequence 0 −→ Y −→ Z −→ X −→ 0 in the category Fst under the
functor ηs splits in the category Fs. So there exists a splitting morphism ηs(X) −→
ηs(Z). Then, according to the condition (ii) for the functor ηs, one can find an
admissible epimorphism X ′ −→ X and a morphism X ′ −→ Z in the category Fst

making the triangle ηs(X
′) −→ ηs(X) −→ ηs(Z) commutative in Fs.

Now, applying the functor ηs to the composition X ′ −→ Z −→ X and the admis-
sible epimorphism X ′ −→ X, we get the same morphism in the category Fs. Since
the functor ηs preserves and reflects admissible epimorphisms, it follows that the
composition X ′ −→ Z −→ X is an admissible epimorphism, too. So we can replace
our original admissible epimorphism X ′ −→ X with this composition and make the
diagram commutative in the category Fst.

Let K −→ X ′ denote the kernel of the (new) admissible epimorphism X ′ −→ X.
Then the composition K −→ X ′ −→ Z is annihilated by the functor ηs (since
the morphism ηs(X

′) −→ ηs(Z) factorizes through the admissible epimorphism
ηs(X

′) −→ ηs(X) by construction), and therefore, comes from a certain mor-
phism ηt(K) −→ ηt(Z)(−1) in the category Ft via the map s0. The morphism
ηt(K) −→ ηt(Z)(−1) is annihilated by the composition with the image of the
admissible epimorphism Z(−1) −→ X(−1) under the functor ηt, because the com-
position K −→ X ′ −→ Z −→ X vanishes in the category Fst (see Lemma 1.2(a-b)),
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and therefore, factorizes through the image of the admissible monomorphism
Y (−1) −→ Z(−1) under the same functor ηt.

Consider the element in Ext1Ft
(ηt(X), ηt(Y )(−1)) induced from the class of the

short exact sequence 0 −→ ηt(K) −→ ηt(X
′) −→ ηt(X) −→ 0 using the morphism

ηt(K) −→ ηt(Y )(−1) that we just constucted. Commutativity of the diagram with
five vertices Y , Z, X, X ′, K (a morphism of short exact sequences with a common
third object X) in the category Fst proves that the image of this Ext1 class in the
category Ft under the map s1 is equal to the class of our original short exact sequence
0 −→ Y −→ Z −→ X −→ 0 in Fst. �

Corollary 1.7. The whole long sequence of Ext groups from Subsection 1.2, as con-
structed in Subsection 1.5, is exact for any two objects X, Y of the category Fst.

Proof. The assertion follows formally from the construction and Lemma 1.6 in view
of Proposition 1.1(a) (applied to the functors ηs, ηt, and the identity functor IdFst).

E. g., let us prove exactness at the terms ExtnFs
(ηs(X), ηs(Y )) for all n > 1. Let

z be an element of our Ext group in the category Fs. By Proposition 1.1(b) applied
to the functor ηs, there exists an Ext class b ∈ ExtnFst

(X,X ′) in the category Fst and
a morphism q : ηs(X

′) −→ ηs(Y ) in the category Fs such that the element z is equal
to the product qηns (b) in the group ExtnFs

(ηs(X), ηs(Y )). By the definition, one has

∂n(z) = ∂0(q)ηnt (b) in Extn+1
Ft

(ηt(X), ηt(Y )(−1)).
Now assume that ∂0(q)ηnt (b) = 0. By Proposition 1.1(a) applied to the func-

tor ηt, there exists a morphism f : X ′′ −→ X ′ and an Ext class b′ ∈ ExtnFst
(X,X ′′)

in the category Fst such that b = fb′ in ExtnFst
(X,X ′) and ∂0(q)ηt(f) = 0 in

Ext1Ft
(ηt(X

′′), ηt(Y )(−1)). By Lemma 1.5 (or, actually, even Lemma 1.3(a)) one
has ∂0(qηs(f)) = ∂0(q)ηt(f) = 0, and by Lemma 1.6 (or, actually, Lemma 1.3(b)),
there exists a morphism g : X ′′ −→ Y in the category Fst such that qηs(f) = ηs(g)
in the group HomFs(ηs(X

′′), ηs(Y )). Finally, we have z = qηns (b) = qηs(f)ηns (b′) =
ηs(g)ηns (b′) = ηns (gb′) in ExtnFs

(ηs(X), ηs(Y )). �

2. The Matrix Factorization Construction

2.1. Posing the problem. Let F be an exact category endowed with a twist functor
(exact autoequivalence) X 7−→ X(1). Let s be a morphism of endofunctors Id −→ (1)
on the category F commuting with the twist functor (1) : F −→ F (see Subsection 1.0
for the precise definitions and discussion).

Let E be another exact category endowed with a twist functor (1) : E −→ E .
Suppose that we are given an exact functor π : F −→ E commuting with the twists
on F and E , and that the following conditions are satisfied:

(i) the functor π is exact-conservative;
(ii) the functor π takes all the morphisms sX : X −→ X(1) in the category F to

zero morphisms in the category E ;
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(iii) any morphism in the category F annihilated by the functor π is divisible by
the natural transformation s;

(iv) for any object X ∈ F , the morphism sX : X −→ X(1) is injective and surjec-
tive; in other words, no nonzero morphism in the category F is annihilated
by the natural transformation s.

The conditions (ii) and (iii) taken together can be restated by saying that a mor-
phism in the category F is annihilated by the functor π if and only if it is divisible
by the natural transformation s. The conditions (iii) and (iv) taken together can
be reformulated by saying that any morphism in the category F annihilated by the
functor π is uniquely divisible by the natural transformation s.

Our goal in this section is to construct an exact category G which we will call the
reduction of exact category F by the natural transformation s taken on the background
of the functor π. The category G comes endowed with exact-conservative functors
γ : F −→ G and ε : G −→ E whose composition εγ is identified with π. The functor γ
annihilates all the morphisms sX , while the functor ε reflects zero morphisms (i. e.,
it is faithful). The category G is also endowed with a twist functor (1) : G −→ G, and
the functors γ and ε commute with the twists.

The Ext groups computed in the categories F and G are related by the following
Bockstein long exact sequence

0 −−→ HomF(X, Y (−1)) −−→ HomF(X, Y ) −−→ HomG(γ(X), γ(Y ))

−−→ Ext1F(X, Y (−1)) −−→ Ext1F(X, Y ) −−→ Ext1G(γ(X), γ(Y ))

−−→ Ext2F(X, Y (−1)) −−→ Ext2F(X, Y ) −−→ Ext2G(γ(X), γ(Y )) −−→ · · ·
for any two objects X, Y ∈ F (cf. [4, Subsection 4.1]).

Here the map sn : ExtnF(X, Y (−1)) −→ ExtnF(X, Y ) is provided by the composition
with the morphism sY (−1) : Y (−1) −→ Y (or, equivalently, the twist by (1) and the
composition with the morphism sX : X −→ X(1)) in the category F . The map
γn : ExtnF(X, Y ) −→ ExtnG(γ(X), γ(Y )) is induced by the exact functor γ : F −→ G.
Finally, the boundary map ∂n : ExtnG(γ(X), γ(Y )) −→ Extn+1

F (X, Y (−1)) is defined
by the construction of Subsections 1.4–1.5 and satisfies the equation

∂i+n+j(γi(a)zγj(b)) = (−1)ia(−1)∂n(z)b

for any objects U , X, Y , V ∈ F and any Ext classes b ∈ ExtjF(U,X), z ∈
ExtnG(γ(X), γ(Y )), and a ∈ ExtiF(Y, V ).

2.2. Matrix factorizations. In order to construct the desired exact category G,

consider first the following category H̃. The objects of H̃ are the diagrams (U, V ) of
the form

V (−1) −−→ U −−→ V −−→ U(1)

in the category F , where the morphism V −→ U(−1) is obtained from the mor-
phism V (−1) −→ U by applying the twist functor (1), while the two composi-
tions V (−1) −→ U −→ V and U −→ V −→ U(1) are equal to the maps sV (−1)
and sU , respectively. Morphisms (U ′, V ′) −→ (U ′′, V ′′) in the category H are the
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pairs of morphisms U ′ −→ U ′′ and V ′ −→ V ′′ in F making the whole diagram
(V ′(−1)→ U ′ → V ′ → U ′(1)) −→ (V ′′(−1)→ U ′′ → V ′′ → U ′′(1)) commutative.

Furthermore, consider the following full subcategory H ⊂ H̃. By the definition, a

diagram (U, V ) ∈ H̃ belongs to the category H if the functor π : F −→ E (which, as
we recall, takes the morphisms sV (−1) and sU in F to zero morphisms in E) transforms
it into an exact sequence π(V (−1)) −→ π(U) −→ π(V ) −→ π(U(1)) in the exact
category E . The functor ∆: H −→ E assigns to a diagram (U, V ) ∈ H the image
of the morphism π(U) −→ π(V ) in E (which is well-defined due to the exactness
condition imposed on the objects of H).

The category H̃ has a natural exact category structure in which a short sequence
of diagrams is exact if it is exact in F at every term of the diagrams. The full subcat-

egory H ⊂ H̃ is closed under the operations of passage to the cokernels of admissible
monomorphisms, the kernels of admissible epimorphisms, and extensions; so in par-
ticular it inherits the induced exact category structure. The functor ∆: H −→ E is
an exact functor between exact categories.

Let I ⊂ H denote the ideal of morphisms in H annihilated by ∆. Consider the
quotient category H/I of the category H by this ideal of morphisms, and let S ⊂
H/I denote the multiplicative class of morphisms which the functor ∆: H/I −→ E
transforms to isomorphisms in E .

Lemma 2.1. Assuming the conditions (i-ii) of Subsection 2.1, the class of morphisms
S is localizing in the category H/I (i. e., it satisfies the left and right Ore conditions).

Proof. The argument follows that in [4, Subsection 4.2]. It is clear from the defini-
tions of the classes I and S that if any two morphisms X ⇒ Y in H/I have equal
compositions with a morphism X ′ −→ X or Y −→ Y ′ belonging to S, then these
two morphisms X ⇒ Y are equal to each other in H/I.

Let (S, T ) −→ (K,L)←− (U, V ) be a pair of morphisms in H such that ∆((U, V )
−→ (K,L)) is an admissible epimorphism in E . Then the morphism U⊕L(−1) −→ K
is an admissible epimorphism in F (since so is its image under π). Consider the fibered
product P = S uK (U ⊕ L(−1)) in F , and set Q = T ⊕ V ∈ F .

Let the map SuK (U⊕L(−1)) −→ T ⊕V be defined as the composition SuK (U⊕
L(−1)) −→ S ⊕ U −→ T ⊕ V and the map T (−1)⊕ V (−1) −→ S uK (U ⊕ L(−1))
be induced by the maps T (−1) −→ S, T (−1) −→ L(−1), V (−1) −→ U , and minus
the map V (−1) −→ L(−1). Then the diagram

T (−1)⊕ V (−1) −−→ S uK (U ⊕ L(−1)) −−→ T ⊕ V −−→ S(1) uK(1) (U(1)⊕ L)

is an object (P,Q) of the category H. Indeed, one easily checks that the diagram

(P,Q) belongs to H̃; and to prove the exactness condition, it suffices to notice that
(P,Q) is the kernel of an admissible epimorphism (S, T ) ⊕ (U, V ) ⊕ (L(−1), L) −→
(K,L) between two objects of H in H̃.

There are natural morphisms (S, T ) ←− (P,Q) −→ (U, V ) in the category H;
the square diagram formed by these two morphisms and the morphisms (S, T ) −→
(K,L) ←− (U, V ) is commutative modulo I. The object ∆(P,Q) is the fibered
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product of ∆(S, T ) and ∆(U, V ) over ∆(K,L). In particular, if the morphism
(U, V ) −→ (K,L) belongs to S, then so does the morphism (P,Q) −→ (S, T ). This
proves a half of the Ore conditions, and the dual half can be proven in the dual
way. �

2.3. Exact category structure. We define the category G as the localization
(H/I)[S−1]. By Lemma 2.1, G is an additive category and the localization H −→ G
is an additive functor. The twist functor (1) : G −→ G is induced by the obvious twist
functor (U, V ) 7−→ (U(1), V (1)) on the category H. The functor γ : F −→ G assigns
to an object X ∈ F the diagram (X,X) with the identity morphism X −→ X in
the middle. The functor ε : G −→ E is induced by the functor ∆.

Lemma 2.2. In the assumption of the conditions (i-iv) from Subsection 2.1, the rule
according to which a short sequence in the category G is said to be exact if its image
under the functor ε is exact in E defines an exact category structure on G. Moreover,
a morphism is an admissible monomorphism (resp., admissible epimorphism) in G
if and only if its image under ε is an admissible monomorphism (resp., admissible
epimorphism) in E.

Proof. We follow the argument in [4, Subsection 4.3]. Consider a morphism f in G
such that ε(f) is an admissible epimorphism in E . Then, clearly, f is a surjective
morphism in G. Represent f by a morphism (U, V ) −→ (K,L) in H and apply
the construction from the proof of Lemma 2.1 to the pair of morphisms (0, 0) −→
(K,L) ←− (U, V ). We obtain a morphism (P,Q) = (ker(U ⊕ L(−1) → K), V ) −→
(U, V ) in H whose image g in G completes the morphism f to a short sequence
0 −→ (P,Q) −→ (U, V ) −→ (K,L) −→ 0 that is exact in G (in the sense of our
definition; i. e., its image under ε is exact in E).

Let us check that the morphism g is the kernel of f in G. Any morphism with the
target (U, V ) in G can be represented by a morphism (X, Y ) −→ (U, V ) inH. Assume
that the composition (X, Y ) −→ (U, V ) −→ (K,L) is annihilated by ∆. Then the
compositionX −→ K −→ L is annihilated by π, so the morphismX −→ K factorizes
through the morphism L(−1) −→ K by the conditions (iii-iv). This allows to lift the
morphism (X, Y ) −→ (U, V ) to a morphism (X, Y ) −→ (P,Q) in H.

The morphism g being injective in G, the above lifting is unique as a morphism in G.
Furthermore, the short sequence 0 −→ ∆(P,Q) −→ ∆(U, V ) −→ ∆(K,L) −→ 0 is
exact in E according to the proof of Lemma 2.1. Recalling that the morphisms taken
to isomorphisms in E by the functor ∆ have been inverted in G, one concludes that
any morphism (S, T ) −→ (U, V ) with the latter property is a cokernel of f in G.

This suffices to check the axioms Ex0–Ex1 and Ext3 from [4, Subsection A.3] for the
category G; it remains to prove Ex2. Suppose that we are given a short exact sequence
in G; it can be represented by a sequence of morphisms (S, T ) −→ (U, V ) −→ (K,L)
in H. Any morphism with the target (K,L) in G can be represented by a morphism
(X, Y ) −→ (K,L) in H. Applying the construction from the proof of Lemma 2.1
again, we obtain an object (M,N) = (X uK (U ⊕L(−1)), Y ⊕V ) in H together with
a pair of morphisms (U, V )←− (M,N) −→ (X, Y ).
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Setting, as above, (P,Q) = (ker(U ⊕ L(−1) → K), V ), we have the above-
constructed morphism (S, T ) −→ (P,Q) in H, whose composition with the natu-
ral admissible monomorphism (P,Q) −→ (M,N) provides a morphism (S, T ) −→
(M,N) in H. The triangle (S, T ) −→ (M,N) −→ (U, V ) is commutative already in
H, and the short sequence 0 −→ (S, T ) −→ (M,N) −→ (X, Y ) −→ 0 is exact in G,
as so is its image under ε in E . The exact category axioms are verified. �

It follows immediately from the above description of the exact category structure
on G that the functor γ : F −→ G is exact and exact-conservative (since both the
functors ε : G −→ E and π = εγ : F −→ E are). The functor ε : G −→ E is faithful,
because the functor ∆: H/I −→ E is faithful by the definition of I. It is also clear
that the functors ε and γ commute with the twists. The more advanced properties
of our reduction construction are discussed below in this section.

2.4. Properties of the reduction functor. The following lemma shows that the
reduction functor γ : F −→ G satisfies the conditions (i-ii) from Subsection 1.1, and
in fact, certain even stronger conditions.

Lemma 2.3. The exact functor γ : F −→ G constructed above has the following
“exact surjectivity” properties:

(a′) for any object X ∈ F and any admissible epimorphism T −→ γ(X) in G there
exists an admissible epimorphism Z −→ X in F and a morphism γ(Z) −→ T
in G making the triangle diagram γ(Z) −→ T −→ γ(X) commutative;

(b′) for any object T ∈ G there exists an object U ∈ F and an admissible epimor-
phism γ(U) −→ T in G;

(c′) for any objects X, Y ∈ F and any morphism γ(X) −→ γ(Y ) in G there
exists an admissible epimorphism X ′ −→ X and a morphism X ′ −→ Y in F
making the triangle diagram γ(X ′) −→ γ(X) −→ γ(Y ) commutative in G;

(d′) for any object X ∈ F and any morphism γ(X) −→ T in G there exists a
morphism X −→ Z in F and an admissible epimorphism γ(Z) −→ T in G
such that the triangle diagram γ(X) −→ γ(Z) −→ T is commutative;

as well as the properties (a ′′-d ′′) dual to (a ′-d ′).

Notice that it follows from the properties (b′-c′) that the morphism γ(Z) −→ T
in (a′) can be chosen to be an admissible epimorphism, too. Moreover, for an exact-
conservative functor γ, the property (a′) can be entirely deduced from (b′-c′).

Indeed, let T −→ γ(X) be an admissible epimorphism in G. According to (b′),
there exists an object U ∈ F together with an admissible epimorphism γ(U) −→ T
in G. The composition γ(U) −→ T −→ γ(X) is a morphism in G between two objects
coming from F . According to (c′), there exists an admissible epimorphism U ′ −→ U
and a morphism U ′ −→ X in F making the triangle diagram γ(U ′) −→ γ(U) −→
γ(X) commutative in G.

Now if the functor γ is exact-conservative, then the morphism U ′ −→ X is an
admissible epimorphism in F , because its image in G is equal to the composition of
admissible epimorphisms γ(U ′) −→ γ(U) −→ T −→ X. In the general case, pick
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an admissible epimorphism Z −→ X in F whose image in G factorizes through the
admissible epimorphism T −→ γ(X). Then U ′ ⊕ Z −→ X is an admissible epimor-
phism in F whose image in G is the composition of two admissible epimorphisms
γ(U ′)⊕ γ(Z) −→ T −→ γ(X).

Proof of Lemma 2.3. Part (b′): let the object T ∈ G be represented by a diagram
(U, V ) = (V (−1) → U → V → U(1) in H; then there is a natural admissible
epimorphism γ(U) −→ T in G. (Indeed, π(U) −→ ∆(U, V ) is an admissible epi-
morphism in E .) Part (c′): let the morphism γ(X) −→ γ(Y ) be represented by a
fraction (X,X) ←− (U, V ) −→ (Y, Y ) of two morphisms in H, where the morphism
(U, V ) −→ (X,X) belongs to S (modulo I). Then there is a natural admissible
epimorphism U −→ X and a natural morphism U −→ Y in F making the diagram
γ(U) −→ γ(X) −→ γ(Y ) commutative in G by the definition. (Indeed, the morphism
π(U) −→ ∆(U, V ) ' ∆(X,X) = π(X) is an admissible epimorphism in E .)

Part (d′): one can represent the morphism γ(X) −→ T in G by a morphism of
diagrams (X,X) −→ (U, V ) in H. Then there is a morphism X −→ U in F and
an admissible epimorphism γ(U) −→ (U, V ) in G, while the triangle (X,X) −→
(U,U) −→ (U, V ) is commutative already in H. Part (a′) follows from (b′) and (c′)
according to the above comments; to prove it directly, represent the morphism T −→
γ(X) in G by a morphism of diagrams (U, V ) −→ (X,X) in H. Then U −→ X is an
admissible epimorphism in F (since π(U) −→ ∆(U, V ) −→ π(X) is a composition of
admissible epimorphisms in E) and (U,U) −→ (U, V ) is an admissible epimorphism
in G, while the triangle (U,U) −→ (U, V ) −→ (X,X) is commutative in H. �

2.5. The first Bockstein sequence.
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