
QUASI-COHERENT TORSION SHEAVES, THE SEMIDERIVED
CATEGORY, AND THE SEMITENSOR PRODUCT

SEMI-INFINITE ALGEBRAIC GEOMETRY OF QUASI-COHERENT SHEAVES

ON IND-SCHEMES

LEONID POSITSELSKI

Abstract. We construct the semi-infinite tensor structure on the semiderived
category of quasi-coherent torsion sheaves on an ind-scheme endowed with a flat
affine morphism into an ind-Noetherian ind-scheme with a dualizing complex. The
semitensor product is “a mixture of” the cotensor product along the base and the
derived tensor product along the fibers. The inverse image of the dualizing complex
is the unit object. This construction is a partial realization of the Semi-infinite
Algebraic Geometry program, as outlined in the introduction to [47].
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Introduction

0.0. The aim of this paper is to extend the Semi-infinite Homological Algebra, as
developed in the author’s monograph [40], to the realm of Algebraic Geometry. Ac-
cording to the philosophy elaborated in the preface to [40], semi-infinite homological
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theories are assigned to “semi-infinite algebrac and geometric objects”. A detailed ex-
planation of what should be understood by a “semi-infinite algebraic variety” was sug-
gested in the introduction to the author’s paper [47] (see also the presentation [48]).
In the present work, we develop a part of the Semi-infinite Algebraic Geometry pro-
gram along the lines of [47, 48].

To be more precise, following the approach of [40], one has to distinguish be-
tween the semi-infinite homology and cohomology theories. The semi-infinite homol-
ogy groups (SemiTor) are assigned to a pair of semimodules, which means roughly
“comodules along a half of the variables and modules along the other half”. The
semi-infinite cohomology groups (SemiExt) are assigned to one semimodule and one
semicontramodule; the latter means “a contramodule along a half of the variables
and a module along the other half”.

In the context of algebraic geometry, quasi-coherent sheaves on nonaffine schemes
and quasi-coherent torsion sheaves on ind-schemes play the role of the “comodules
along some of the variables”, while for contramodules one has to consider the contra-
herent cosheaves [44]. In the present paper, we restrict ourselves to the semi-infinite
homology, the SemiTor; so contraherent cosheaves do not appear.

According to the philosophy of [40], the key technical concept for semi-infinite
homological algebra is the semiderived category. This means “the coderived category
along a half of the variables mixed with the derived category along the other half”.
One is supposed to take the coderived category along the coalgebra variables and the
derived category along the ring/algebra variables.

How does one interpret this prescription in the context of algebraic geometry, or
more specifically, e. g., quasi-coherent sheaves on algebraic varieties? Is one supposed
to take the coderived or the derived category of quasi-coherent sheaves, or how does
it depend on the nature of the variety at hand? This paper grew out of the author’s
attempts to find an answer to this question, which spanned more than a decade since
about 2009. The paper [47] and the presentation [48] were the first formulations of
the conclusions I had arrived at.

0.1. So, what is semi-infinite geometry? Before attempting to answer this question,
let us discuss semi-infinite set theory first.

Let S be a set. A semi-infinite structure on S is the datum of a set of semi-infinite
subsets S+ in S such that, for any two semi-infinite subsets S+′ and S+′′ ⊂ S, the
set-theoretic difference S+′ \ S+′′ is a finite set. Furthermore, if a subset S+ ⊂ S is
semi-infinite and S+′ ⊂ S is a subset for which both the sets S+′ \ S+ and S+ \ S+′

are finite, then S+′ should be also a semi-infinite subset.
So, in order to specify a semi-infinite structure on S, it suffices to point out one

particular semi-infinite subset in S; then it becomes clear what the other semi-infinite
subsets are. In the standard semi-infinite structure on the set of integers Z, the subset
of positive integers is a semi-infinite subset.

Given a semi-infinite structure on S, the dual semi-infinite structure is formed by
the set of all subsets S− = S \ S+, where S+ ⊂ S are the semi-infinite subsets. The
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subsets S− ⊂ S are called co-semi-infinite. Every infinite set has the trivial semi-
infinite structure, in which the semi-infinite subsets are precisely the finite subsets,
and the cotrivial semi-infinite structure, in which the co-semi-infinite subsets are pre-
cisely the finite ones. On a finite set, the trivial and cotrivial semi-infinite structures
coincide, and there are no other semi-infinite structures; but any infinite set admits
infinitely many semi-infinite structures.

The datum of a semi-infinite structure on S is equivalent to the datum of a compact,
Hausdorff topology on the set S∞ = S t {−∞,+∞} for which the induced topology
on the subset S ⊂ S∞ is discrete. A subset S+ ⊂ S contains a semi-infinite subset
if and only if S+ t {+∞} is a neighborhood of the point +∞ in S∞, while a subset
S− ⊂ S contains a co-semi-infinite subset if and only if S−t{−∞} is a neighborhood
of the point −∞ ∈ S∞. In other words, a semi-infinite structure on a set is the same
thing as the datum of a two-point compactification.

Notice that there is a notion of “relative cardinality”, a well-defined integer, for a
pair of semi-infinite subsets in S. Given two semi-infinite subsets S+′ and S+′′ ⊂ S,

put “|S+′|−|S+′′|” = |S̃+\S+′′|−|S̃+\S+′| = |S+′\S+|−|S+′′\S+| ∈ Z, where S̃+ and

S
+

are any semi-infinite subsets in S such that S ⊂ S+′ ∩ S+′′ and S+′ ∪ S+′′ ⊂ S̃+.
So it makes sense to say that “there are more elements in S+′ than in S+′′ ” (and
how many more, precisely), even though none of the two sets may be contained in
the other one, and their (infinite) cardinalities are the same.

0.2. The notion of a locally linearly compact topological vector space (otherwise
known as a Tate vector space) is the central concept of semi-infinite linear algebra.

Here is the formal definition: a complete, separated topological vector space W over
a field k is said to be linearly compact if open vector subspaces of finite codimension
form a base of neighborhoods of zero in W . Equivalently, this means that W is
isomorphic to the projective limit of a (directed, if one wishes) projective system of
discrete finite-dimensional vector spaces, endowed with the projective limit topology;
or the product of discrete one-dimensional vector spaces, endowed with the product
topology. A topological vector space V is said to be locally linearly compact if it has
a linearly compact open subspace.

Informally, one can say a locally linearly compact vector space V is a topological
vector space whose topological basis is indexed by a set S with a natural semi-
infinite structure. A topological basis of a linearly compact open subspace W ⊂ V
is a semi-infinite subset in S, while a basis of the discrete quotient space V/W is the
complementary co-semi-infinite subset in S.

To a set S with a semi-infinite structure, one can assign the locally linearly compact
topological vector space V =

⊕
t∈S\S+ kt⊕

∏
s∈S+ ks, where S+ ⊂ S is a semi-infinite

subset. Here the topology is discrete on the first direct summand and linearly compact
on the second one. Obviously, the (topological) vector space V does not depend on the
choice of a particular semi-infinite subset S+ within the given semi-infinite structure
on the set S.

Similarly to the relative cardinality of a pair of semi-infinite subsets, one can speak
about the “relative dimension” (a well-defined integer) for a pair of linearly compact
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open subspaces W ′ and W ′′ ⊂ V in a given locally linearly compact topological vector
space V . There is also the notion of a “relative determinant” (a functorially defined
one-dimensional k-vector space) for W ′ and W ′′.

The topological k-vector space of formal Laurent power series k((t)) in one vari-
able t with the coefficients in k is the thematic example of a locally linearly compact
topological vector space. The subspace of formal Taylor power series k[[t]] ⊂ k((t))
is a linearly compact open subspace.

0.3. Now we can offer the following very rough and imprecise definition of a semi-
infinite geometric object, or a “semi-infinitely structured space”. A semi-infinitely
structured space is an (infinite-dimensional) space Y with local or global coordinates
(xs)s∈S indexed by a set S with a natural semi-infinite structure.

It seems to makes sense to require that, for every point p ∈ Y , the subset S(p) ⊂ S
of all indices s ∈ S for which xs(p) 6= 0 be contained in a semi-infinite subset,
S(p) ⊂ S+, in the set S. So all the coordinates may vanish simulaneously, but at
most a semi-infinite subset of the coordinates may be simultaneously nonzero at any
given point on Y .

Then one can say that a closed subvariety Y + ⊂ Y is a semi-infinite subvariety if in
local coordinates it can be defined by a system of equations prescribing a fixed value
to every coordinate xs with s ∈ S−, for some co-semi-infinite subset S− ⊂ S. One
can think of a “semi-infinite homology theory”, in which semi-infinite subvarieties
would be cycles of homological dimension ∞/2 + n, n ∈ Z (where one postulates
|S+| =∞/2 for one fixed semi-infinite subset S+ ⊂ S, and then has |S+′| ∈ ∞/2 +Z
for every other semi-infinite subset S+′ ⊂ S).

One can think of a “semi-infinite intersection theory”, in which subvarieties of
finite codimension in Y would form a graded ring, with respect to the (properly
understood) intersection, and semi-infinite subvarieties would form a Z-graded (or
a “(∞/2 + Z)-graded”) module over this graded ring. The intersection of a semi-
infinite subvariety with a subvariety of finite codimension would produce another
semi-infinite subvariety, interpreted as their product.

This is the kind of geometric speculation which inspired the present work. Moving
closer to the setting in this paper, one can consider a particular case when the co-
ordinates xs with s ∈ S− can be somehow globally separated and grouped together,
producing a fibration π : Y −→ X. So the local coordinates on X are indexed by a
co-semi-infinite subset of the varibles, while the local coordinates on the fibers are in-
dexed by a semi-infinite subset (thus the fibers Yq = π−1(q), q ∈ X, are “semi-infinite
subvarieties” in Y in the above sense).

0.4. The cornerstone technical, homological principle of our approach to semi-
infinite algebra and geometry is that one is supposed to work with the semiderived
category. This means a mixture of the derived category along a semi-infinite subset of
the variables and the coderived (or contraderived) category along a co-semi-infinite
subset of the variables.
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One reason why this is important is because the delicate choice of an exotic derived
category to work with dictates the derived functors which are naturally produced or
well-defined. One notices this when one starts working systematically with doubly
unbounded complexes. The left derived tensor product is well-behaved on the de-
rived category, while the right derived cotensor product behaves well as a functor on
the coderived category. In the context of algebraic geometry, this means that the
left derived functor of ∗-restriction onto a closed subscheme is well-defined on the
derived category, while the right derived functor of !-restriction (or, in our notation,
+-restriction) onto a locally closed subscheme is well-behaved as a functor between
the coderived categories.

How does one know along which coordinates the derived category needs to be
taken, and along which ones the coderived category? One answer to this question is
that, given a fibration, there is a natural way to define a semiderived category that
is a mixture of the coderived category along the base and the derived category along
the fibers. Another heuristic is that, given an infinite set of coordinates which are
allowed to be nonzero all simultaneously, one should take the derived category along
these; but if the condition is imposed that only a finite subset of the coordinates may
differ from zero at any given point, one should take the coderived category.

0.5. So, what is the coderived category? There are several alternative answers to
this question offered in the contemporary literature. The simplest definition says the
the coderived category of an abelian or exact category E is the homotopy category of
unbounded complexes of injective objects in E. It is presumed that there are enough
injective objects in E. This approach was initiated by Krause [23] and developed by
Becker [6] (see also [37], [62], and [56]).

In the present author’s work, the coderived categories first appeared in connec-
tion with derived nonhomogeneous Koszul duality [41] and were subsequently used
for the purposes of semi-infinite homological algebra in [40] (see also [47, 51, 55]).
Our approach emphasizes a construction of the coderived category as the quotient
category of the homotopy category by what we call the full subcategory of coacyclic
complexes. The coacyclic complexes are defined as the ones that can be obtained
from the totalizations of short exact sequences of complexes using the operations of
cone and infinite coproduct. Any coacyclic complex (in an abelian/exact category
with exact coproducts) is acyclic, but the converse is not generally true.

The example of the abelian category X–qcoh of quasi-coherent sheaves on a semi-
separated Noetherian scheme X is instructive. For this class of schemes, both the
derived category D(X–qcoh) and the coderived category Dco(X–qcoh) are perfectly
well-behaved. In fact, both of them are compactly generated. The compact objects
in D(X–qcoh) are the perfect complexes, while the compact objects in Dco(X–qcoh)
are all the bounded complexes of coherent sheaves. In this connection, the coderived
category Dco(X–qcoh) has been called the category of “ind-coherent sheaves” in [16].
Both the derived and the coderived category can be properly considered for much
wider classes of algebro-geometric objects, but the natural directions for generaliza-
tion differ: while the derived category D(X–qcoh) makes perfect sense for an arbitrary
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quasi-compact semi-separated scheme X, the natural generality for the coderived cat-
egory is that of an ind-Noetherian ind-scheme (or ind-stack) X.

0.6. As we have mentioned above, one important way to think of the distinction
between the derived and the coderived category in the algebraic geometry context is
in connection with the left derived inverse image functor vs. the extraordinary inverse
image functor. This observation seems to be due to Gaitsgory [16].

Given a morphism of (good enough) schemes f : Y −→ X, the direct image func-
tor f∗ : Y –qcoh −→ X–qcoh has finite homological dimension, so its right derived
functor is equally well-defined on the unbounded derived and the coderived cate-
gories, Rf∗ : D(Y –qcoh) −→ D(X–qcoh) and Rf∗ : Dco(Y –qcoh) −→ Dco(X–qcoh).
The inverse image functor f ∗ : X–qcoh −→ Y –qcoh, however, has infinite homologi-
cal dimension in general. As infinite left resolutions are problematic in the coderived
categories, the left derived inverse image Lf ∗ : D(X–qcoh) −→ D(Y –qcoh) is well-
defined on the convenional unbouded derived categories, but not on the coderived
categories (unless the morphism f has finite Tor-dimension). Whenever it exists, the
left derived inverse image Lf ∗ is left adjoint to Rf∗.

The functor Rf∗ preserves coproducts both in the unbounded derived and the
coderived categories; so, by the Brown representability theorem, it has a right ad-
joint functor in both the contexts. This right adjoint functor, which we, following
the terminology of [44], call the extraordinary inverse image functor in the sense of
Neeman (with the reference to [33]) and denote by f !, may be not as important for
algebraic geometry as the extraordinary inverse image functor in the sense of Deligne,
which we denote by f+ (it is denoted by f ! in [19] and Deligne’s appendix to [19]).

The functor f+ is defined by the conditions that (fg)+ ' g+f+ for any pair
of composable morphisms f and g; one has f+ = f ! for a proper morphism f ;
and one has j+ = j∗ for an open immersion j. The functor f+ : Dco(X–qcoh) −→
Dco(Y –qcoh) is well-defined on the coderived categories [44, Section 5.16], but not on
the unbounded derived categories. In particular, even for locally closed immersions f ,
it is impossible to define a functor f+ : D(X–qcoh) −→ D(Y –qcoh) in such a way that
one would have j+ = j∗ for open immersions, while i+ = Ri! would be the functor of
right derived restriction with supports for closed immersions i, and (fg)+ ' g+f+ for
all composable pairs of morphisms [33, Example 6.5]. The punchline: the unbounded
derived category works well with the left derived inverse image Lf ∗; the coderived
category words well with the extraordinary inverse image f+.

0.7. What is the semiderived category? To answer this question properly, it is better
to step back and ask the most basic question: What is the derived category? The
derived category is usually defined as the result of localizing the homotopy category
of complexes by the class of quasi-isomorphisms. What are the quasi-isomorphisms?
Let R be an associative algebra over a field k, and let f : C• −→ D• be a morphism
of complexes of A-modules. What does it mean that f is a quasi-isomorphism? Here
is the answer which we suggest: let us apply the forgetful functor and view f as a
morphism of complexes of k-vector spaces. The map f is a quasi-isomorphism of
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complexes of R-modules if and only if it is a homotopy equivalence of complexes of
k-vector spaces. In other words, a complex of R-modules is acyclic if and only if its
underlying complex of k-vector spaces is contractible.

The previous paragraph implies that one should think of the derived category in
the context of a forgetful functor. But one does not have to go all the way and
forget the whole action of the algebra R, staying only with vector spaces. One can
forget the action of a half of the variables in R, while keeping the other half. Let
A −→ R be a ring homomorphism. One defines the R/A-semiderived category of
R-modules Dsi

A(R–mod) as the quotient category of the homogopy category of (un-
bounded complexes of) R-modules by the thick subcategory of those complexes which
are coacyclic as complexes of A-modules. This definition of the semiderived category
can be found in [47, Section 5] (see [40, Section 2.3] for the original definition of the
semiderived category of semimodules). Thus the semiderived category is a mixture
of the “coderived category along A” and the “derived category in the direction of
R relative to A”. This is the way to mix the coderived category with the derived
category alluded to several paragraphs above.

In the context of algebraic geometry, the forgetful functor R–mod −→ A–mod
is interpreted geometrically as the direct image functor. To have the direct image
functor exact and faithful (as needed for the definition of a semiderived category), it
is simplest to assume the geometric morphism in question to be affine. Thus one can
speak of the semiderived category of quasi-coherent sheaves Dsi

X(Y–qcoh) for an affine
morphism of schemes π : Y −→ X. More specifically, following the discussion above,
one may want to restrict generality to Noetherian schemes X, and then expand it to
ind-Noetherian ind-schemes X. Then one assumes π : Y −→ X to be a morphism of
ind-schemes with (possibly infinite-dimensional) affine scheme fibers, and considers
the semiderived category of what we call quasi-coherent torsion sheaves on Y.

0.8. What can one do with the semiderived category of quasi-coherent torsion
sheaves? Our suggestion is to construct a tensor category structure on it. We start
with defining the cotensor product operation on the coderived category Dco(X–tors) of
quasi-coherent torsion sheaves on X, and proceed further to construct the semitensor
product on the Y/X-semiderived category Dsi

X(Y–tors) of quasi-coherent torsion
sheaves on Y. For this purpose, we need to choose a dualizing complex on X.

The notion of a dualizing complex of quasi-coherent sheaves on an ind-scheme is
itself a perfect illustration of the importance of the coderived categories. Notice
that there is some affinity between the dualizing complexes and the extraordinary
inverse images in the sense of Deligne: for a morphism of schemes f : Y −→ X,
given a dualizing complex D•X on X, the complex f+(D•X) is a dualizing complex
on Y . A dualizing complex on a scheme, however, is bounded; so one does not feel
the distinction between the derived and the coderived category in connection with
it (in fact, there is no difference between the derived and the coderived category for
bounded below complexes). A dualizing complex on an ind-scheme, on the other
hand, is usually not bounded below; so it is important that a dualizing complex of
quasi-coherent torsion sheaves D•X on an ind-scheme X has to be viewed as an object
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of the coderived category Dco(X–tors). We explain in Section 11.1(7) that, for about
the simplest example of an infinite-dimensional ind-scheme X (the “discrete affine
space over a field”), the dualizing complex D•X on X is an acyclic complex!

0.9. Let us have a more detailed discussion of the cotensor and semitensor products,
whose definitions are the main objectives of this paper. The functor TorZ1 , known
classically as the torsion product of abelian groups [25, 39, 22], defines a tensor
structure on the category of torsion abelian groups with Q/Z as the unit object.
The torsion product of p-primary abelian groups, for a fixed prime number p, is
very similar to the cotensor product of comodules over the coalgebra C dual to the
topological algebra k[[z]] of formal Taylor power series in one variable over a field.

The first aim of this paper is to extend these constructions to complexes of quasi-
coherent torsion sheaves on an ind-Noetherian ind-scheme X with a dualizing com-
plex. The dualizing complex D•X is the unit object of this tensor category structure,
which is defined on the coderived category [41] Dco(X–tors) of quasi-coherent torsion
sheaves on X. The case of a Noetherian scheme X with a dualizing complex D•X was
considered by Murfet in [31, Proposition B.6] and in our paper [12, Section B.2.5],
and the case of an ind-affine ind-Noetherian (or ind-coherent) ℵ0-ind-scheme X with
a dualizing complex, in [44, Section D.3].

Furthermore, pursuing the Semi-infinite Algebraic Geometry program as outlined
in the introduction to the paper [47] and in the presentation [48], we consider a
flat affine morphism of ind-schemes π : Y −→ X. The fibers of the morphism π
are, generally speaking, infinite-dimensional affine schemes. Then the semiderived
category [40, 47] Dsi

X(Y–tors) of the abelian category of quasi-coherent torsion sheaves
on Y relative to the direct image functor π∗ : Y–tors −→ X–tors carries the operation
of semitensor product, making it a tensor category whose unit object is the inverse
image π∗D•X of the dualizing complex on X to the ind-scheme Y. The case of an
affine Noetherian (or coherent) scheme SpecA in the role of X and an affine scheme
SpecR in the role of Y was considered in [47, Section 6].

The cotensor product �D•X of complexes of quasi-coherent torsion sheaves on X
is similar to a right derived functor, in that (under mild assumptions on D•X) the
cotensor product of two bounded complexes is a complex bounded from below. The
semitensor product ♦π∗D•X of complexes of quasi-coherent torsion sheaves of Y re-
sembles a double-sided derived functor, as the semitensor product of two bounded
complexes is, generally speaking, a doubly unbounded complex. Thus our semitensor
product construction can be viewed as a version of semi-infinite homology theory for
quasi-coherent sheaves; and indeed, it reduces to a particular case of the semi-infinite
homology functor SemiTor from the book [40] in the case of an ind-zero-dimensional
(ind-Artinian) ind-scheme X of ind-finite type over a field.

0.10. From the perspective of algebraic geometry, the most natural way to think
about the conventional left derived functor of tensor product of quasi-coherent sheaves
on a scheme may be the following one. Let Y be a scheme over a field k, and
let M• and N • be two complexes of quasi-coherent sheaves over it. Consider the
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Cartesian product Y ×kY , and consider the external tensor productM•�kN • of the
complexes M• and N •; this is a complex of quasi-coherent sheaves on Y ×k Y . Let
∆Y : Y −→ Y ×k Y be the diagonal morphism. Then the derived tensor product of
M• and N • on Y can be defined as the left derived restriction of the external tensor
product to the diagonal, M• ⊗L

OY N
• = L∆∗Y (M• �k N •).

In this spirit, if one is interested in alternative tensor product operations on quasi-
coherent sheaves, the most natural approach may be to keep the external tensor
product unchanged, but tweak the restriction to the diagonal. Following the discus-
sion above, one is supposed to take R∆! (or ∆+) for the cotensor product and some
“combination of L∆∗ with R∆! ” for the semitensor product.

It was shown already in [12, end of Section B.2.5] that Murfet’s tensor structure [31]
(which we call the cotensor product) on the coderived category of quasi-coherent
sheaves on a separated scheme X of finite type over a field k can be computed as
M• �D•X N

• ' R∆!
X(M• �k N •) for any two complexes of quasi-coherent sheaves

M• and N • on X. This presumes the choice of the dualizing complex D•X = p+(k)
on the scheme X, where p : X −→ Spec k is the morphism of finite type (this is
called the rigid dualizing complex in [66, 65, 59]). In this paper, we extend this
computation to ind-separated ind-schemes X of ind-finite type, and further to the
relative/semi-infinite context of an affine morphism π : Y −→ X.

0.11. The first three sections of this paper develop the basic language of ind-schemes,
quasi-coherent torsion sheaves, and pro-quasi-coherent pro-sheaves. The pro-quasi-
coherent pro-sheaves are used in the subsequent sections as a key technical tool for our
constructions involving quasi-coherent torsion sheaves. In the next three sections, we
consider an ind-Noetherian ind-scheme X, the coderived category Dco(X–tors), and
the cotensor product operation �D•X on it. In the last five sections, we study the
relative (or properly semi-infinite) situation: a flat affine morphism π : Y −→ X, the
semiderived category Dsi

X(Y–tors), and the semitensor product functor ♦π∗D•X .
We discuss the basics of the theory of (strict ind-quasi-compact ind-quasi-

separated) ind-schemes in Section 1. The additive/exact/abelian categories of
module objects over ind-schemes (namely, the quasi-coherent torsion sheaves and
the pro-quasi-coherent pro-sheaves) are defined and discussed in Sections 2–3. In
particular, we show that quasi-coherent torsion sheaves on a reasonable ind-scheme
(in the sense of [7]) form a Grothendieck category.

The equivalence between the coderived category of quasi-coherent torsion sheaves
and the derived category of flat pro-quasi-coherent pro-sheaves on an ind-semi-
separated ind-Noetherian ind-scheme with a dualizing complex is constructed in
Section 4. The cotensor product functor over such an ind-scheme is defined and many
(particularly ind-Artinian) examples of it are considered in Section 5. In particular,
we establish the comparisons with the derived cotensor product of comodules over
a cocommutative coalgebra over a field and the torsion product of torsion modules
over a Dedekind domain.

The particular case of an ind-separated ind-scheme X of ind-finite type over a
field k is considered in Section 6. In this setting, we compute the cotensor product
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of complexes of quasi-coherent torsion sheaves as the right derived !-restriction of the
external tensor product to the diagonal closed immersion ∆X : X −→ X×k X.

In the relative context of a flat affine morphism π : Y −→ X into an ind-semi-
separated ind-Noetherian ind-scheme with a dualizing complex, the equivalence be-
tween the semiderived category of quasi-coherent torsion sheaves on Y relative to X
and the derived category of X-flat pro-quasi-coherent pro-sheaves on Y is constructed
in Section 7. In particular, the semiderived category Dsi

X(Y–tors) itself is introduced
in Section 7.1. The functor of semitensor product of complexes of quasi-coherent
torsion sheaves over Y relative to X is defined in Section 8. The special case of a flat
affine morphism Y −→ X with an ind-zero-dimensional ind-scheme of ind-finite type
X over a field k is considered in Section 8.5, and the comparison with the functor
SemiTor from the book [40] is discussed.

In Section 9 we compute the semiderived product as a combination of two kinds
of derived restrictions to the diagonal. Let X be an ind-separated ind-scheme of
ind-finite type over a field k, and let π : Y −→ X be a flat affine morphism. The
diagonal map ∆Y : Y −→Y×k Y factorizes naturally into two “partial diagonals”

Y
δ−→ Y ×X Y

η−→ Y ×k Y; both δ and η are closed immersions. Let D•X be
a rigid dualizing complex on X. For any two complexes MMM • and NNN • of quasi-
coherent torsion sheaves on Y, we construct a natural isomorphism MMM •♦π∗D•X NNN • '
Lδ∗Rη!(MMM •�kNNN

•) in Dsi
X(Y–tors). In Section 10 we show that both the semiderived

category and the semitensor product operation on it are preserved when a flat affine
morphism π : Y −→ X is replaced with a flat affine morphism π′ : Y −→ X′ such
that π = τπ′, where τ : X′ −→ X is a smooth (or “weakly smooth”) affine morphism
of finite type between ind-semi-separated ind-Noetherian ind-schemes.

Several simple, but geometrically nontrivial examples of flat affine morphisms of
ind-schemes π : Y −→ X with an ind-separated ind-scheme X of ind-finite type over
a field are considered in Section 11. In particular, in Section 11.1, we discuss the
example of the flat affine morphism of ind-affine ind-schemes Y −→ X corresponding
to a surjective open linear map of locally linearly compact topological vector spaces
V −→ V/W with a discrete target V/W and a linearly compact kernel W , such as
k((t)) −→ k((t))/k[[t]]. Here k((t)) is the topological vector space of formal Laurent
power series in a variable t over a field k, and k[[t]] ⊂ k((t)) is the open vector subspace
of Taylor power series. It follows from the results of Section 10 that the semiderived
category Dsi

X(Y–tors) in this example does not depend on the choice of a linearly
compact open subspace W ⊂ V , but is entirely determined by the locally linearly
compact vector space V . The semitensor product operation on Dsi

X(Y–tors) also does
not depend on W up to a dimensional cohomological shift and a determinantal twist.

This paper does not strive for maximal natural generality. Instead, our aim is to
demonstrate certain phenomena in a suitable context where they manifest themselves
in a fully nontrivial way. If one is interested in generalizations, one of the first
ideas would be to replace ind-schemes with ind-stacks. Another and perhaps even
more important direction for possible generalization is to replace an affine morphism
π : Y −→ X with a quasi-compact, semi-separated one. We attempt to make the first

10



step in this direction in the appendix, where a definition of the semiderived category
Dsi

X(Y–tors) for a nonaffine morphism π is worked out.
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1. Ind-Schemes and their Morphisms

1.1. Ind-objects. Let K be a small category. Consider the category SetsKop

of con-
travariant functors from K to the category of sets. The category Ind(K) of ind-objects
in K can be defined as the full subcategory in SetsKop

consisting of the (filtered) direct
limits of representable functors MorK(−, K), K ∈ K.

Explicitly, this means that the objects of Ind(K) are represented by inductive sys-
tems (Kγ ∈ K)γ∈Γ indexed by directed posets Γ. For any γ′, γ′′ ∈ Γ there exists
γ ∈ Γ such that γ′ ≤ γ, γ′′ ≤ γ; and for every β < γ ∈ Γ the transition morphism
Kβ −→ Kγ in K is given in such a way that the triangle diagrams Kα −→ Kβ −→ Kγ

are commutative for all α < β < γ ∈ Γ. The object of Ind(K) represented by an in-
ductive system (Kγ)γ∈Γ is denoted by “lim−→”

γ∈Γ
Kγ ∈ Ind(K). The set of morphisms

in Ind(K) between the two objects represented by two inductive systems (Kγ)γ∈Γ and
(Lδ)δ∈∆ is computed by the formula

(1) MorInd(K)(“lim−→”
γ∈Γ

Kγ, “lim−→”
δ∈∆

Lδ) = lim←−
Sets

γ∈Γ
lim−→

Sets

δ∈∆
MorK(Kγ, Lδ),

where the inductive and projective limits in the right-hand side are taken in the
category of sets.

One can (and we will) consider K as a full subcategory in Ind(K), embedded by the
functor assigning to an object M ∈ K the related inductive system (Mε)ε∈E indexed by
the singleton poset E = {∗} with M∗ = M . Then the formula (1) essentially means

that, firstly, “lim−→”
γ∈Γ

Kγ = lim−→
Ind(K)

γ∈Γ
Kγ, and secondly, MorInd(K)(K, “lim−→”

δ∈∆
Lδ) =

lim−→
Sets

δ∈∆
MorK(K,Lδ) for all K ∈ K and “lim−→”

γ∈Γ
Kγ, “lim−→”

δ∈∆
Lδ ∈ Ind(K).

One can drop the assumption that the category K be small and, for any category
K, define the category of ind-objects Ind(K) by saying that the objects of Ind(K)
correspond to directed inductive systems in K and the morphisms are given by the
formula (1).

Let K be a category with fibered products (i. e., every pair of morphisms with the
same target K −→M and L −→M has a pullback in K). Then the category Ind(K)
also has fibered products, which can be constructed as follows.
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Let f : “lim−→”
γ∈Γ

Kγ −→ “lim−→”
ε∈E

Mε and g : “lim−→”
δ∈∆

Lδ −→ “lim−→”
ε∈E

Mε be a pair

of morphisms with the same target in Ind(K). Denote by Ξ the set of all quintuples
(γ′, δ′, ε′, fγ′ε′ , gδ′ε′) such that γ′ ∈ Γ, δ′ ∈ ∆, ε′ ∈ E, while fγ′ε′ : Kγ′ −→ Mε′ and
gδ′ε′ : Lδ′ −→ Mε′ are morphisms in K forming two commutative square diagrams
with the morphisms f , g and the natural morphisms Kγ′ −→ “lim−→”

γ∈Γ
Kγ, Lδ′ −→

“lim−→”
δ∈∆

Lδ, Mε′ −→ “lim−→”
ε∈E

Mε in Ind(K).

The set Ξ is directed in the natural partial order, and the projection maps Ξ −→ Γ,
Ξ −→ ∆, Ξ −→ E are cofinal maps of directed posets. Put Kξ = Kγ′ , Lξ = Lδ′ ,
Mξ = Mε′ for ξ = (γ′, δ′, ε′, fγ′ε′ , gδ′ε′) ∈ Ξ. Then our pair of morphisms with the
same target (f, g) in Ind(K) can be obtained by applying the functor “lim−→”

ξ∈Ξ
to the

Ξ-indexed inductive system of pairs of morphisms with the same target f ′ξ : Kξ −→
Mξ and g′ξ : Lξ −→Mξ in K (where f ′ξ = fγ′ε′ and g′ξ = gδ′ε′).

Finally, let Nξ ∈ K denote the fibered product of the pair of morphisms f ′ξ and g′ξ.
Then “lim−→”

ξ∈Ξ
Nξ ∈ Ind(K) is the fibered product of the pair of morphisms f and g.

In other words, for any directed poset Ξ, the functor “lim−→”
ξ∈Ξ

: KΞ −→ Ind(K) (acting

from the category KΞ of Ξ-indexed inductive systems in K to the category of ind-
objects) preserves fibered products, as one can easily see.

In fact, stronger assertions hold. First of all, for any category K, the category
Ind(K) can be equivalently defined using inductive systems indexed by filtered cate-
gories rather than filtered posets [1, Theorem 1.5]. Furthermore, the full subcategory
Ind(K) is closed under (filtered) direct limits in SetsKop

[21, Theorem 6.1.8] (so direct
limits exist in Ind(K)). Returning to the particular case of a category K with fibered
products, one observes that Ind(K) is closed under fibered products in SetsKop

in this
case. Since finite limits commute with (filtered) direct limits in SetsKop

, it follows
that fibered products commute with direct limits in Ind(K).

1.2. Ind-schemes. Ind-schemes are the main object of study in this paper. Contrary
to what the name seems to suggest, in the advanced contemporary point of view
ind-schemes are not defined as ind-objects in the category of schemes (or in any
other category). Rather, one considers the category of affine schemes AffSch (so
AffSch ' CRingsop, where CRings is the category of commutative rings). Then the
ind-schemes are those contravariant functors AffSchop −→ Sets (“presheaves of sets”)
on the category of affine schemes which can be obtained as direct limits of functors
representable by schemes [7, Section 7.11], [58, Section 1]. So the category of ind-
schemes is a certain full subcategory in the category of presheaves of sets on AffSch.

Let Sch denote the category of schemes, and let CSch ⊂ Sch be the full subcate-
gory of concentrated (that is, quasi-compact quasi-separated) schemes. Then, for any
X ∈ Sch, the functor MorSch(−, X) is actually a sheaf of sets in the Zariski topol-
ogy on Sch. In particular, the restrictions of MorSch(−, X) to CSch and AffSch are
sheaves in the Zariski topology on the categories of concentrated schemes and affine
schemes, respectively. Furthermore, the filtered direct limit functors in the categories
of presheaves and Zariski sheaves of sets on CSch agree, due to the finite nature of
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the Zariski topology on a concentrated scheme. The same applies to the prescheaves
and Zariski sheaves on AffSch. For these reasons, one can consider ind-schemes as
Zariski sheaves of sets on AffSch, which are the same thing as Zariski sheaves of sets
on CSch. These arguments explain that ind-schemes can be equivalently viewed as
functors CSchop −→ Sets instead of AffSchop −→ Sets.

In view of the previous paragraph, one can develop the following simplified, näıve
approach to the definition of ind-concentrated ind-schemes, which we will use. An
(ind-concentrated) ind-scheme X is defined as an ind-object in the category of con-
centrated schemes CSch. In the rest of this paper, all “schemes” will be presumed
concentrated, and all “ind-schemes” will be ind-concentrated. An ind-scheme is said
to be strict if it can be represented by an inductive system of closed immersions, i. e.,
X = “lim−→”

γ∈Γ
Xγ, where the morphism of schemes Xγ −→ Xδ in the inductive system

is a closed immersion for every γ < δ ∈ Γ.
An ℵ0-ind-scheme X is an ind-scheme which can be represented by a countable

inductive system of schemes, i. e., X = “lim−→”
γ∈Γ

Xγ, where the poset Γ is has (at

most) countable cartinality. It is not difficult to see that any strict ℵ0-ind-scheme
X can be represented by a sequence of closed immersions indexed by the natural
numbers, X = “lim−→”(X0 → X1 → X2 → · · · ), where the transition morphisms
Xn −→ Xn+1 are closed immersions of schemes. The fact that closed immersions are
monomorphisms in Sch is helpful to keep in mind here (and elsewhere below).

Following the discussion in Section 1.1, fibered products exist in the category of
(ind-concentrated) ind-schemes (because they exist in CSch, as the full subcategory
CSch is closed under fibered products in Sch). Furthermore, the full subcategory of
strict ind-schemes is closed under fibered products in the category of ind-schemes.
Moreover, looking into the above construction of the fibered product in the case of
three ind-objects “lim−→”

γ∈Γ
Kγ, “lim−→”

δ∈∆
Lδ, and “lim−→”

ε∈E
Mε represented by inductive

systems of monomorphisms, one can see that the morphisms fγ′ε′ and gδ′ε′ are deter-
mined by the indices γ’, δ′, and ε′; so the set Ξ is at most countable whenever the
sets Γ, ∆, and E are. Hence the full subcategory of strict ℵ0-ind-schemes is closed
under fibered products in the category of strict ind-schemes.

It is also useful to observe that, considering CSch as a full subcategory in strict ind-
schemes, the fibered product of any two schemes over a strict ind-scheme is a scheme.
Indeed, given a strict ind-scheme X = “lim−→”

γ∈Γ
Xγ with closed immersions Xγ −→ Xδ

for γ < δ ∈ Γ, for any two schemes Y and Z and morphisms Y −→ X ←− Z, the
fibered product Y ×XZ is isomorphic to Y ×Xγ Z, where γ ∈ Γ is any index for which
both the morphisms Y −→ X and Z −→ X factorize through Xγ −→ X.

Remark 1.1. The definition of a strict ind-scheme raises an obvious question. Let
X ∈ Ind(CSch) be an ind-scheme which can be represented by an inductive system
of closed immersions in CSch. In what sense is such a representation unique if it
exists? Suppose that X ' “lim−→”

γ∈Γ
Yγ ' “lim−→”

δ∈∆
Zδ, where (Yγ)γ∈Γ and (Zδ)δ∈∆

are inductive systems of closed immersions of schemes. In what sense are these two
“strict” representations of X equivalent?
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A more advanced approach is to consider the poset E = Γ ×∆ with the product
order, and write X ' “lim−→”

(γ,δ)∈E
Wγ,δ, where Wγ,δ = Yγ ×X Zδ. Still one may be

interested in having a straightforward answer to the following straightforward ques-
tion. Suppose that, for some γ ∈ Γ and δ ∈ ∆, the morphism Yγ −→ X factorizes as
Yγ −→ Zδ −→ X. How do we know that Yγ −→ Zδ is a closed immersion?

The next two lemmas (in which the schemes do not need to be concentrated)
provide an explanation in a natural generality.

Lemma 1.2. (a) Let X −→ Y −→ Z be morphisms of schemes such that the com-
position X −→ Z is a locally closed immersion. Then the morphism X −→ Y is a
locally closed immersion.

(b) Let X −→ Y −→ Z be morphisms of schemes such that the composition
X −→ Y −→ Z is a closed immersion and the morphism Y −→ Z is separated.
Then X −→ Y is a closed immersion.

(c) In particular, if the composition X −→ Y −→ Z is a closed immersion and Y
is a separated scheme, then the morphism X −→ Y is a closed immersion.

Proof. Parts (a) and (b) are [20, Tag 07RK]. The morphism X −→ Y is the compo-
sition X = X ×Y Y −→ X ×Z Y −→ Y , where the morphism X ×Z Y −→ Y is a
base change of the morphism X −→ Z (by the morphism Y −→ Z). If X −→ Z is
a locally closed immersion, then X ×Z Y −→ Y is a locally closed immersion; and
if X −→ Z is a closed immersion, then X ×Z Y −→ Y is a closed immersion [20,
Tag 01JU]. The morphism X ×Y Y −→ X ×Z Y is a locally closed immersion; and
moreover if the morphism Y −→ Z is separated, then X×Y Y −→ X×Z Y is a closed
immersion, by [20, Tag 01KR]. Finally, a composition of locally closed immersions is
a locally closed immersion, and a composion of closed immersions is a closed immer-
sion [20, Tag 02V0]. Part (c) follows from (b), since any scheme morphism from a
separated scheme is separated [20, Tag 01KV]. �

Lemma 1.3. Let X −→ Y −→ Z −→ W be morphisms of schemes such that the
compositions X −→ Z and Y −→ W are closed immersions. Then the morphism
X −→ Y is a closed immersion.

Proof. By Lemma 1.2(a) applied to the pair of morphisms Y −→ Z −→ W , the
morphism Y −→ Z is a locally closed immersion. Any locally closed immersion
is a separated morphism; so Lemma 1.2(b) is applicable to the pair of morphisms
X −→ Y −→ Z, proving that X −→ Y is a closed immersion. �

Returning to the question posed in Remark 1.1, one can choose an index ε ∈ Γ such
that the morphism Zδ −→ X factorizes as Zδ −→ Yε −→ X, and then one can choose
an index η ∈ ∆ such that the morphism Yε −→ X factorizes as Yε −→ Zη −→ X.
The triangle diagrams Yγ −→ Zδ −→ Yε and Zδ −→ Yε −→ Zη are commutative,
because the transition morphisms in both the inductive systems are monomorphisms.
By Lemma 1.3, it follows that Yγ −→ Zδ is a closed immersion.

1.3. Morphisms of ind-schemes. In the sequel, we will presume all our ind-
schemes to be (ind-concentrated and) strict. Let us start from the observation that
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any morphism of ind-schemes can be obtained by applying the functor “lim−→” to some
morphism of inductive systems of (closed immersions of) schemes.

Indeed, let f : “lim−→”
δ∈∆

Yδ = Y −→ X = “lim−→”
γ∈Γ

Xγ be a morphism of ind-schemes

represented by inductive systems of closed immersions (Yδ)δ∈∆ and (Xγ)γ∈Γ. Arguing
as in Section 1.1 and keeping in mind that closed immersions are monomorphisms in
CSch, one can consider the directed poset Ξ of all pairs (δ ∈ ∆, γ ∈ Γ) such that the
composition Yδ −→ Y −→ X factorizes through the morphism Xγ −→ X. Then one
has f = “lim−→”

ξ∈Ξ
fξ, where fξ : Yξ −→ Xξ is the related morphism between Yξ = Yδ

and Xξ = Xγ.
Alternatively, consider the product of two posets E = ∆×Γ with the product order,

and for every ε = (δ, γ) ∈ E put Yε = Yδ ×X Xγ and Xε = Xγ. Then f = “lim−→”
ε∈E

fε,

where fε : Yε −→ Xε.
The following representation of morphisms of schemes may be even more useful.

Following [58, Lemma 1.7 and Definition 1.8], one says that a morphism of ind-
schemes f : Y −→ X is “representable by schemes” if, for every scheme T and a
morphism of ind-schemes T −→ X, the fibered product Y×X T is a scheme. In this
case, let X = “lim−→”

γ∈Γ
Xγ be a representation of X by an inductive system of closed

immersions of schemes. Put Yγ = Y×XXγ. Then Y = “lim−→”
γ∈Γ

Yγ is a representation

of Y by an inductive system of closed immersions of schemes, and the morphism f
is represented as f = “lim−→”

γ∈Γ
fγ, where fγ : Yγ −→ Xγ.

A morphism of ind-schemes f : Y −→ X is said to be affine if, for any scheme
T and a morphism of ind-schemes T −→ X, the ind-scheme Y ×X T is a scheme
and the morphism of schemes Y ×X T −→ T is affine. Equivalently (in view of [58,
Lemma 1.7]), this means that Y ×X T is an affine scheme whenever T is an affine
scheme. Let X = “lim−→”

γ∈Γ
Xγ be an ind-scheme represented by an inductive system

of closed immersions of schemes. Then a morphism of ind-schemes f : Y −→ X is
affine if and only if, for every γ ∈ Γ, the fibered product Y ×X Xγ is a scheme and
the morphism of schemes Y×X Xγ −→ Xγ is affine.

A morphism of ind-schemes Z −→ X is said to be a closed immersion if, for every
scheme T and a morphism of ind-schemes T −→ X, the ind-scheme Z×XT is a scheme
and the morphism Z ×X T −→ T is a closed immersion of schemes. Obviously, any
closed immersion of ind-schemes is an affine morphism.

In particular, given a scheme Z and an ind-scheme X, a morphism of ind-schemes
Z −→ X is said to be a closed immersion if, for every scheme T and a morphism of
ind-schemes T −→ X, the morphism of schemes Z×X T −→ T is a closed immersion.
In this case, one says that the morphism Z −→ X makes Z a closed subscheme in X.

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme represented by an inductive system of closed

immersions of schemes Xγ −→ Xδ, γ < δ ∈ Γ. Let i : Z −→ X be a morphism into X
from a scheme Z, and let γ ∈ Γ be an index such that i factorizes as Z −→ Xγ −→ X.
Then the morphism i is a closed immersion if and only if the morphism Z −→ Xγ is
a closed immersion of schemes. This observation provides another way to answer the
question from Remark 1.1.
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A morphism of ind-schemes f : Y −→ X is said to be flat if, for any scheme T
and a morphism of ind-schemes T −→ X, the fibered product Y ×X T is a scheme
and the morphism of schemes Y×X T −→ T is flat. Let X = “lim−→”

γ∈Γ
Xγ be an ind-

scheme represented by an inductive system of closed immersions of schemes. Then
a morphism f : Y −→ X is flat if and only if, for every γ ∈ Γ, the fibered product
Y×X Xγ is a scheme and the morphism of schemes Y×X Xγ −→ Xγ is flat.

1.4. Ind-affine examples. An ind-scheme is said to be ind-affine if it can be repre-
sented by an inductive system of affine schemes. It follows from Lemma 1.2(c) (with
an affine scheme Y ) that any closed subscheme of a strict ind-affine scheme is affine.
Thus any (strict) ind-affine ind-scheme can be represented by an inductive system of
closed immersions of affine schemes.

Examples 1.4. (1) Consider the directed poset of all positive integers Z>0 in the
divisibility order. To every n ∈ Z>0, assign the affine scheme Xn = SpecZ/nZ.
Whenever m divides n, there is a unique (surjective) ring homomorphism Z/nZ −→
Z/mZ, and accordingly a unique morphism (closed immersion) of affine schemes
Xm −→ Xn. The inductive system of schemes (Xn)n∈Z>0 represents a strict ind-

affine ℵ0-ind-scheme X, which we will denote by X = Spi Ẑ. Here Ẑ =
∏

p Zp is the
profinite completion of the ring of integers, or equivalently, the product of the rings
of p-adic integers Zp taken over all the prime numbers p.

(2) Choose a prime number p, and consider the directed poset of all nonnegative
integers Z≥0 in the usual linear order. To every r ∈ Z≥0, assign the affine scheme
Xr = SpecZ/prZ. Whenever r ≤ s, there is a unique (surjective) ring homomorphism
Z/psZ −→ Z/prZ, and accordingly a unique morphism (closed immersion) of affine
schemes Xr −→ Xs. The inductive system of schemes (Xr)r∈Z≥0

represents a strict
ind-affine ℵ0-ind-scheme X, which we will denote by X = SpiZp.

The ind-scheme Spi Ẑ is the coproduct (“disjoint union”) of the ind-schemes SpiZp
in the category of ind-schemes, taken over all the prime numbers p.

Examples 1.5. (1) Pick a field k, and consider the directed poset of all nonnegative
integers Z≥0 in the usual linear order. To every r ∈ Z≥0, assign the affine schemeXr =
Spec k[x]/xrk[x]. Whenever r ≤ s, there is a unique (surjective) homomorphism
of k-algebras k[x]/xsk[x] −→ k[x]/xrk[x] taking the coset x + xsk[x] to the coset
x + xrk[x]. Let Xr −→ Xs be the related closed immersion of affine schemes. The
inductive system of schemes (Xr)r∈Z≥0

represents a strict ind-affine ℵ0-ind-scheme
X, which we will denote by X = Spi k[[x]]. This ind-scheme comes endowed with a
morphism of ind-schemes Spik[[x]] −→ Spec k.

Example 1.5(1) is a close analogue of Example 1.4(2).

(2) Let C be a coassociative, cocommutative, counital coalgebra over a field k.
Any coassociative coalgebra over a field is the union of its finite-dimensional sub-
coalgebras (which form a directed poset by inclusion). All the subcoalgebras of C
are also coassociative, cocommutative, and counital. Let Γ denote the poset of all
finite-dimensional subcoalgebras of C in the inclusion order. For a finite-dimensional
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subcoalgebra E ⊂ C (so E ∈ Γ), the dual vector space E∗ is an associative, commu-
tative, and unital finite-dimensional k-algebra.

For every pair of finite-dimensional subcoalgebras E ′, E ′′ ⊂ C such that E ′ ⊂ E ′′,
the dual map E ′′∗ −→ E ′∗ to the inclusion E ′ −→ E ′′ is a surjective homomor-
phism of commutative rings. Consider the related closed immersion of affine schemes
Spec E ′∗ −→ Spec E ′′∗. The inductive system of schemes (Spec E∗)E∈Γ represents a
strict ind-affine ind-scheme X, which we will denote by X = Spi C ∗. This ind-scheme
comes endowed wih a morphism of ind-schemes Spi C ∗ −→ Spec k.

Here the notation C ∗ stands for the associative, commutative, and unital topolog-
ical k-algebra C ∗ = lim←−E∈Γ

E∗, with the topology of projective limit of discrete finite-

dimensional vector spaces/algebras E∗. Example 1.5(1) is the particular case of Exam-
ple 1.5(2) corresponding to the choice of the coalgebra C such that C ∗ = k[[x]] (with
the x-adic topology on k[[x]]). The coalgebra C is a k-vector space with the basis
{1∗, x∗, x2∗, . . . , xn∗, . . . }, n ∈ Z≥0, with the counit map C 3 1∗ 7−→ 1 ∈ k, xn∗ 7−→ 0
for n > 0, and the comultiplication map C 3 xn∗ 7−→

∑
p+q=n x

p∗ ⊗ xq∗ ∈ C ⊗k C .

Examples 1.6. This example is taken from [7, Example 7.11.2(i)].
(1) Let R be an associative, commutative, unital ring endowed with a complete,

separated topology with a base of neighborhoods of zero consisting of open ideals.
For every open ideal I ⊂ R, consider the quotient ring R/I and the affine scheme
SpecR/I. Whenever I, J ⊂ R are open ideals such that J ⊂ I, there exists a
unique (surjective) morphism of commutative rings R/J −→ R/I making the tri-
angle diagram R −→ R/J −→ R/I commutative. Let SpecR/I −→ SpecR/J be
the related closed immersion of affine schemes. The inductive system of schemes
(SpecR/I)I⊂R indexed by the directed poset of open ideals in R with the reverse
inclusion order represents a strict ind-affine ind-scheme X, which we will denote by
SpiR. For any base of neighborhoods of zero B consisting of open ideals in R, one
has SpiR = “lim−→”

I∈B SpecR/I (where B is viewed as a directed poset in the reverse

inclusion order).

(2) In particular, assume in the context of (1) that R has a countable base of
neighborhoods of zero. Then one can choose a countable base of neighborhoods of
zero B consisting of open ideals in R, hence SpiR = “lim−→”

I∈B SpiR/I is an ind-affine

ℵ0-ind-scheme. The functor R 7−→ SpiR establishes an anti-equivalence between
the category of topological commutative rings with a countable neighborhood of zero
consisting of open ideals and the category of ind-affine ℵ0-ind-schemes.

In the more general context of (1), the assignment R 7−→ SpiR is a fully faithful
contravariant functor from the category of topological commutative rings where open
ideals form a base of neighborhoods of zero to the category of ind-affine ind-schemes.
Its essential image consists of all the ind-affine ind-schemes “lim−→”

γ∈Γ
SpecRγ for which

the projection map lim←−γ∈Γ
Rγ −→ Rδ is surjective for all δ ∈ Γ.

Examples 1.4 and 1.5(1) are particular cases of Example 1.6(2). In particular,

the ind-affine ind-scheme Spi Ẑ in Example 1.4(1) corresponds to the topological

ring R = Ẑ with its profinite topology, while the ind-affine ind-scheme SpiZp in
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Example 1.4(2) corresponds to the topological ring R = Ẑp with its p-adic topology.
The ind-affine ind-scheme Spi k[[x]] in Example 1.5(1) corresponds to the topological
ring or k-algebra R = k[[x]] with its x-adic topology.

Example 1.5(2) is a particular case of Example 1.6(1) corresponding to the topo-
logical ring R = C ∗ with its profinite-dimensional (linearly compact) topology. The
ind-affine ind-scheme Spec C ∗ in Example 1.5(2) corresponds to a topological ring
with a countable base of neighborhoods of zero (i. e., C ∗ has a countable base of
neighborhoods of zero) if and only if Spi C ∗ is an ℵ0-ind-scheme, and if and only
if the underlying vector space of the coalgebra C has at most countable dimension
over k.

For a further discussion of specific examples of ind-affine ind-schemes, see Sec-
tion 11.1 below.

2. Quasi-Coherent Torsion Sheaves

In this section and below, as mentioned in Sections 1.2–1.3, all the schemes are
concentrated, and all the ind-schemes are ind-concentrated and strict.

2.1. Reasonable ind-schemes. Here we largely follow [7, Section 7.11.1].
Let X be a concentrated scheme with the structure sheaf OX . Notice that any

closed subscheme of a concentrated scheme is concentrated. Let Z ⊂ X be a closed
subscheme, and let IZ,X ⊂ OX denote the quasi-coherent sheaf of ideals in OX
corresponding to Z. So IZ,X is the kernel of the natural surjective morphism of
quasi-coherent sheaves OX −→ k∗OZ , where k : Z −→ X is the closed immersion.
The closed subscheme Z ⊂ X is said to be reasonable if IZ,X is generated (as a
quasi-coherent sheaf on X) by a finite set of local sections.

Let Y ⊂ X be a closed subscheme such that Z ⊂ Y ⊂ X. Then Z is also a closed
subscheme in Y . Denote the closed immersion morphism by i : Y −→ X. Then the
natural surjective morphism OX −→ i∗OY of quasi-coherent sheaves on X restricts
to a surjective morphism IZ,X −→ i∗IZ,Y . It follows that Z is a reasonable closed
subscheme in Y whenever Z is a reasonable closed subcheme in X.

Part (a) of the following lemma is more general.

Lemma 2.1. (a) Let Y −→ X be a morphism of schemes and Z ⊂ X be a reasonable
closed subscheme. Then Z ×X Y is a reasonable closed subscheme in Y .

(b) Let Y and Z be closed subschemes in a scheme X such that Z ⊂ Y ⊂ X.
Assume that Z is a reasonable closed subscheme in Y , and Y is a reasonable closed
subscheme in X. Then Z is a reasonable closed subscheme in X.

Proof. Both the assertions are essentially local (as the schemes are presumed to be
concentrated) and reduce to the affine case. Part (a): let R −→ S be a homomor-
phism of commutative rings and I ⊂ R be a finitely generated ideal. Then the claim
is that the kernel of the surjective map S −→ R/I ⊗R S is a finitely generated ideal
in S. Part (b): let R −→ S −→ T be surjective homomorphisms of commutative
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rings such that the kernel of R −→ S is a finitely generated ideal in R and the kernel
of S −→ T is a finitely generated ideal in T . Then the claim is that the kernel of
R −→ T is a finitely generated ideal in R. �

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme represented by an inductive system of closed

immersions of schemes. A closed subscheme Z ⊂ X is said to be reasonable if, for
every closed subscheme Y ⊂ X such that Z ⊂ Y , the closed subcheme Z in Y is
reasonable. A closed subscheme Z ⊂ X is reasonable if and only if, for every index
γ ∈ Γ such that Z ⊂ Xγ, the closed subcheme Z in Xγ is reasonable.

An ind-scheme X is said to be reasonable if it is a filtered direct limit of its rea-
sonable closed subschemes. Equivalently, X is reasonable if and only if there exists
a (filtered) inductive system of closed immersions of schemes (Xγ)γ∈Γ such that, for
every γ < δ ∈ Γ, the closed subscheme Xγ in Xδ is reasonable. Clearly, in the latter
case, Xγ is a reasonable closed subscheme in X for every γ ∈ Γ.

Let Y −→ X be a morphism of ind-schemes which is “representable by schemes” in
the sense of Section 1.3. Then it follows from Lemma 2.1(a) that, for any reasonable
closed subscheme Z ⊂ X, the fibered product Z×XY is a reasonable closed subscheme
in Y. Therefore, the ind-scheme Y is reasonable if the ind-scheme X is.

2.2. Quasi-coherent sheaves and functors. Given a scheme X, we denote by
X–qcoh the abelian (Grothendieck) category of quasi-coherent sheaves on X. For
every morphism of (concentrated) schemes f : Y −→ X, we have the direct and
inverse image functors f∗ : Y –qcoh −→ X–qcoh and f ∗ : X–qcoh −→ Y –qcoh; the
functor f ∗ is left adjoint to f∗. The functors f∗ and f ∗ are the restrictions (to the full
subcategories of quasi-coherent sheaves) of the similar functors acting between the
ambient abelian categories of sheaves of OX-modules and sheaves of OY -modules.

The category X–qcoh is a tensor subcategory of the (associative, commutative, and
unital) tensor category of sheaves of OX-modules, with respect to the tensor product
functor − ⊗OX −. The structure sheaf OX is the unit object. The inverse image
f ∗ : X–qcoh −→ Y –qcoh is a tensor functor. The next lemma is very well-known; it
is called the “projection formula”.

Lemma 2.2. Let f : Y −→ X be a morphism of (concentrated) schemes, M be a
quasi-coherent sheaf on X, and N be a quasi-coherent sheaf on Y . Then there is a
natural morphism of quasi-coherent sheaves on X

M⊗OX f∗N −−→ f∗(f
∗M⊗OY N ),

which is an isomorphism if the morphism f is affine.

Proof. The morphism in question is adjoint to the morphism f ∗(M ⊗OX f∗N ) '
f ∗M⊗OY f ∗f∗N −→ f ∗M⊗OYN induced by the adjunction morphism f ∗f∗N −→ N
in Y –qcoh. The second assertion is local in X, so it reduces to the case of affine
schemes, for which it means the following. Let R −→ S be a commutative ring
homomorphism, M be an R-module, and N be an S-module. Then there is a natural
isomorphism of R-modules M ⊗R N ' (S ⊗RM)⊗S N . �
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For any two sheaves of OX-modules M and N , we denote by HomOX (M,N )
the sheaf of OX-modules with the modules of sections HomOX (M,N )(U) =
HomOU (M|U ,N|U) for all open subschemes U ⊂ X. The sheaf of OX-modules
HomOX (M,N ) is quasi-coherent whenever the sheaf N is quasi-coherent and the
sheaf M is locally (i. e., in restriction to a small enough Zariski neighborhood of
every point of X) the cokernel of a morphism between finite direct sums of copies of
the structure sheaf O.

Let Z ⊂ X be a closed subscheme with the closed immersion morphism i : Z −→ X.
For any sheaf of OX-modules M, denote by i!M the sheaf of OZ-modules defined
by the property that i∗i

!M = HomOX (i∗OZ ,M) is the subsheaf of M consisting of
all the local sections annihilated by IZ,X . The sheaf of OZ-modules i!M is quasi-
coherent whenever the sheaf of OX-modules M is and the closed subscheme Z ⊂ X
is reasonable. In this case, the functor i! : X–qcoh −→ Z–qcoh is right adjoint to the
direct image functor i∗ : Z–qcoh −→ X–qcoh.

Lemma 2.3. Let f : Y −→ X be a morphism of (concentrated) schemes and Z ⊂ X
be a reasonable closed subscheme with the closed immersion i : Z −→ X. Consider
the pullback diagram

Z ×X Y
k
//

g

��

Y

f

��

Z
i

// X

Then there are natural isomorphisms
(a) i!f∗ ' g∗k

! of functors Y –qcoh −→ Z–qcoh;
(b) f ∗i∗ ' k∗g

∗ of functors Z–qcoh −→ Y –qcoh.

Proof. Parts (a) and (b) are adjoint to each other, so it suffices to check any one
of them. Both the assertions (particularly clearly (b)) are essentially local and re-
duce to the case of affine schemes, for which they mean the following. Let R −→ S
be a commutative ring homomorphism and I ⊂ R be a finitely generated ideal.
Then (a) for any S-module N , there is a natural isomorphism of R/I-modules
HomR(R/I,N) ' HomS(S/IS,N); and (b) for any R/I-module M , there is a natural
isomorphism of S-modules S ⊗RM ' S/IS ⊗R/I M .

The assumption of the closed subscheme Z ⊂ X being reasonable is only needed
in part (a). For a further generalization of part (b), see Lemma 3.3(a) below. �

More generally, for an arbitrary closed immersion of schemes i : Z −→ X, the direct
image functor i∗ : Z–qcoh −→ X–qcoh has a right adjoint (whose existence follows
already from the facts that Z–qcoh is a Grothendieck abelian category and i∗ is an
exact functor preserving coproducts). This functor, which could be properly called
the “quasi-coherent i!”, can be constructed by applying the coherator functor [63,
Sections B.12–B.14] to the “O-module i!” mentioned above. In fact, a more specific
description is available [20, Tag 01R0].
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In the sequel, the notation i! for a closed immersion i will always stand for the
“quasi-coherent i!”. For the closed immersion of a reasonable closed subscheme
i : Z −→ X, the “O-module i!” and the “quasi-coherent i!” agree.

Notice that, for any closed immersion i, the direct image functor i∗ is fully faithful;
so the adjunction morphism N −→ i!i∗N is an isomorphism for all N ∈ Z–qcoh.
The adjunction morphism i∗i

!M −→ M is a monomorphism for all M ∈ X–qcoh
(cf. Lemma 2.14 below).

2.3. Quasi-coherent torsion sheaves. We follow [7, Sections 7.11.3–4]. Let X
be a reasonable ind-scheme. A quasi-coherent torsion sheaf M on X (called an
“O!-module” in [7]) is the following set of data:

(i) to every reasonable closed subscheme Y ⊂ X, a quasi-coherent sheaf M(Y ) on
Y is assigned;

(ii) to every pair of reasonable closed subschemes Y , Z ⊂ X, Z ⊂ Y with the
closed immersion morphism iZY : Z −→ Y , a morphism iZY ∗M(Z) −→M(Y )

of quasi-coherent sheaves on Y is assigned;
(iii) such that the corresponding morphism M(Z) −→ i!ZYM(Y ) of quasi-coherent

sheaves on Z is an isomorphism;
(iv) and, for every triple of reasonable closed subschemes Y , Z, W ⊂ X, W ⊂ Z ⊂

Y , the triangle diagram iWY ∗M(W ) −→ iZY ∗M(Z) −→ M(Y ) is commutative
in Y –qcoh.

Let X = “lim−→”
γ∈Γ

Xγ be a representation of X by an inductive system of reasonable

closed subschemes. Then, in order to construct a quasi-coherent torsion sheaf M
on X, it suffices to specify the quasi-coherent sheaves M(Xγ) ∈ Xγ–qcoh for every
γ ∈ Γ and the morphisms iXγXδ∗M(Xγ) −→ M(Xδ) for every γ < δ ∈ Γ satisfying
conditions (iii–iv) for W = Xβ, Z = Xγ, Y = Xδ, β < γ < δ ∈ Γ. The quasi-
coherent sheaves M(Y ) for all the other reasonable closed subschemes Y ⊂ X and the
related morphisms (ii) can then be uniquely recovered so that conditions (iii–iv) are
satisfied for all reasonable closed subschemes in X.

Morphisms of quasi-coherent torsion sheaves f : M −→ N on X are defined in
the obvious way. We denote the category of quasi-coherent torsion sheaves on X by
X–tors. In the rest of Section 2, our main aim is to prove the following theorem.

Theorem 2.4. For any reasonable strict ind-concentrated ind-scheme X, the category
of quasi-coherent torsion sheaves X–tors is a Grothendieck abelian category.

The proof of Theorem 2.4 will be given at the end of Section 2.7.

2.4. Ind-affine examples. (1) Let X = Spi Ẑ be the ind-affine ind-scheme from
Example 1.4(1). Then X is a reasonable ind-scheme, and the category X–tors is
equivalent to the category of torsion abelian groups.

Indeed, the closed subschemes of Spi Ẑ are precisely the schemes Xn = SpecZ/nZ.
All of them are reasonable. Let M be a torsion abelian group; then the corresponding

quasi-coherent torsion sheaf M on Spi Ẑ is defined by the rule that M(Xn) ∈ Xn–qcoh
is the quasi-coherent sheaf corresponding to the Z/nZ-module M(n) ⊂ M of all
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the elements annihilated by n in M . The morphisms of quasi-coherent sheaves
iZY ∗M(Z) −→ M(Y ) correspond to the inclusion maps of abelian groups M(m) −→
M(n) for m dividing n. Conversely, given a quasi-coherent torsion sheaf M on Spi Ẑ,
the related torsion abelian group M is the direct limit M = lim−→n∈Z>0

M(Xn)(Xn).

(2) Let X = SpiZp be the ind-affine ind-scheme from Example 1.4(2). Then X
is a reasonable ind-scheme, and the category X–tors is equivalent to the category of
p-primary (torsion) abelian groups.

Indeed, the closed subschemes of Spi Ẑ are precisely the schemes Xr = SpecZ/prZ.
All of them are reasonable. Let M be a p-primary abelian group; then the cor-
responding quasi-coherent torsion sheaf M on SpiZp is defined by the rule that
M(Xr) ∈ Xr–qcoh is the quasi-coherent sheaf corresponding to the Z/prZ-module
M(pr) ⊂ M of all the elements annihilated by pr in M . Conversely, given a quasi-
coherent torsion sheaf M on SpiZp, the related p-primary abelian group M is the
direct limit M = lim−→r∈Z≥0

M(Xr)(Xr).

(3) Let X = Spi k[[x]] be the ind-affine ind-scheme from Example 1.5(1). Then,
similarly to (2), one can describe the closed subschemes in X and see that all of them
are reasonable. The category X–tors is equivalent to the category of x-primary torsion
k[x]-modules, i. e., the full subcategory in the abelian category of all k[x]-modules
consisting of all the k[x]-modules M such that for every element b ∈ M there exists
an integer r ≥ 1 for which xrb = 0 in M .

(4) Let X = Spi C ∗ be the ind-affine ind-scheme from Example 1.5(2). Then X
is a reasonable ind-scheme, and the category X–tors is equivalent to the category of
comodules over the coalgebra C .

Indeed, the closed subchemes of Spi C ∗ are precisely the schemes XE = Spec E∗,
where E ⊂ C are the finite-dimensional subcoalgebras. All the closed subschemes
in X are reasonable. For any C -comodule M , denote by M(E) ⊂ M the maximal
C -subcomodule of M whose C -comodule structure comes from an E-comodule struc-
ture. Simply put, M(E) is the kernel of the composition M −→ C⊗kM −→ C /E⊗kM
of the coaction map M −→ C ⊗k M with the map C ⊗k M −→ C /E ⊗k M induced
by the natural surjection C −→ C /E .

Notice that the category of E-comodules is naturally equivalent to the category
of E∗-modules. The quasi-coherent torsion sheaf M on Spi C ∗ corresponding to a
C -comodule M is defined by the rule that M(XE) ∈ XE–qcoh is the quasi-coherent
sheaf corresponding to the E∗-module M(E). The morphisms of quasi-coherent sheaves
iXE′XE′′ ∗M(XE′ )

−→M(XE′′ )
for E ′ ⊂ E ′′ correspond to the inclusion maps M(E ′) −→

M(E ′′). Conversely, given a quasi-coherent torsion sheaf M on Spi C ∗, the related
C -comodule M is the direct limit M = lim−→E⊂C

M(XE)(XE).

(5) Let R be a complete, separated topological commutative ring where open ideals
form a base of neighborhoods of zero, as in Example 1.6(1). We will say that an open
ideal I ⊂ R is reasonable (with respect to the given topology on R) if, for any open
ideal J ⊂ R such that J ⊂ I, the kernel of the natural surjective ring homomorphism
R/J −→ R/I is a finitely generated ideal in the discrete ring R/J.
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A topological ring R is said to be reasonable if reasonable open ideals form a base
of neighborhoods of zero in R. Equivalently, R is reasonable if and only if there
exists a base of neighborhoods of zero B consisting of open ideals in R such that for
all J ⊂ I ∈ B the kernel of the natural surjective ring homomorphism R/J −→ R/I
is a finitely generated ideal in R/J.

Let X = SpiR be the ind-affine ind-scheme from Example 1.6(1). Then X is a
reasonable ind-scheme if and only if R is a reasonable topological ring.

(6) Let R be a reasonable topological commutative ring; so SpiR is a reasonable
ind-scheme. Then the category X–tors is equivalent to the category R–discr of discrete
R-modules. This means the full subcategory R–discr ⊂ R–mod in the category of
abelian category of R-modules R–mod consisting of all the R-modules M such that
for every element b ∈M the annihilator of b is an open ideal in R.

Indeed, the closed subschemes of SpiR are precisely the schemes XI = SpecR/I,
where I ⊂ R ranges over the open ideals. Let us say that I ⊂ R is a reasonable open
ideal if the closed subscheme XI ⊂ X is reasonable. This means that, for every open
ideal J ⊂ I ⊂ R, the kernel of the map R/J −→ R/I is a finitely generated ideal.

For any discrete R-module M , denote by M(I) ⊂M the submodule of all elements
annihilated by I. Then the quasi-coherent torsion sheaf M on SpiR corresponding
to M is defined by the rule that, for any reasonable open ideal I ⊂ R, the quasi-
coherent torsion sheaf M(XI) ∈ XI–qcoh corresponds to the R/I-module M(I). The
morphisms of quasi-coherent sheaves iXIXJ∗M(XI) −→ M(XJ) for reasonable open
ideals J ⊂ I ⊂ R correspond to the inclusion maps M(J) −→M(I). Conversely, given
a quasi-coherent torsion sheaf M on SpiR, the related discrete R-module M is the
direct limit M = lim−→I⊂R M(XI)(XI) taken over the directed poset of reasonable open

ideals I ⊂ R (in the reverse inclusion order).

The above examples explain the terminology “quasi-coherent torsion sheaves”. One
can also observe that, while in every one of the examples (1–5) the category X–tors
is indeed abelian as Theorem 2.4 claims, the forgetful functors X–tors −→ Z–qcoh
assigning to a quasi-coherent torsion sheaf M on X the quasi-coherent sheaf M(Z) ∈
Z–qcoh for a reasonable closed subscheme Z ⊂ X are not exact. In fact, the functors
M 7−→ M(Z) : X–tors −→ Z–qcoh are left, but not necessarily right exact (see Sec-
tion 2.8 below for a further discussion). This explains why Theorem 2.4 is nontrivial
and its proof is not straightforward.

2.5. Direct limits. Recall that the functor of global sections of quasi-coherent
sheaves over a concentrated scheme preserves (filtered) direct limits. It follows
that so does the direct image functor f∗ for a morphism of concentrated schemes
f : Y −→ X. The inverse image functor f ∗, being a left adjoint, obviously preserves
direct limits. Furthermore, for any reasonable closed subscheme Z ⊂ X with
the closed immersion morphism i : Z −→ X, the functor i! : X–qcoh −→ Z–qcoh
preserves direct limits.

Let X be a reasonable ind-scheme and (Mθ)θ∈Θ be an inductive system of quasi-
coherent torsion sheaves on X, indexed by a directed poset Θ. For every reasonable
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closed subscheme Z ⊂ X, put M(Z) = lim−→θ∈Θ
(Mθ)(Z) (where the direct limit is taken

in the category of quasi-coherent sheaves on Z). Then the collection of quasi-coherent
sheaves M(Z) with the obvious maps iZY ∗M(Z) −→M(Y ) for Z ⊂ Y ⊂ X is a quasi-
coherent torsion sheaf M on X (as one can see from the previous paragraph). One
has M = lim−→θ∈Θ

Mθ in the category X–tors.

2.6. Direct images. Let X be a reasonable ind-scheme and f : Y −→ X be a mor-
phism of ind-schemes which is “representable by schemes”. According to Section 2.1,
the ind-scheme Y is also reasonable.

Let N be a quasi-coherent torsion sheaf on Y. For every reasonable closed sub-
scheme Z ⊂ X, put M(Z) = fZ∗(N(W )) ∈ Z–qcoh, where fZ is the morphism
W = Z ×X Y −→ Z and fZ∗ : W–qcoh −→ Z–qcoh is the direct image functor
of quasi-coherent sheaves. Then it is clear from Lemma 2.3(a) that the collection
of quasi-coherent sheaves M(Z) with the natural maps iZ′Z′′∗M(Z′) −→ M(Z′′) for
Z ′ ⊂ Z ′′ ⊂ X is a quasi-coherent torsion sheaf M on X.

Put f∗N = M . This construction defines the functor of direct image of quasi-
coherent torsion sheaves f∗ : Y–tors −→ X–tors.

2.7. Γ-systems. Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme represented by an

inductive system of closed immersions of reasonable closed subschemes. The defini-
tion of what we will call a Γ-system on X (which is a shorthand for “(Xγ)γ∈Γ-system
of quasi-coherent sheaves”) is obtained from the definition of a quasi-coherent torsion
sheaf in Section 2.3 by restricting the reasonable subschemes under consideration to
those belonging to the inductive system (Xγ)γ∈Γ and dropping the condition (iii).

In other words, a Γ-system M on X is the following set of data:

(i) to every index γ ∈ Γ, a quasi-coherent sheaf M(γ) on Xγ is assigned;
(ii) to every pair of indices γ < δ ∈ Γ with the related transition morphism

iγδ : Xγ −→ Xδ, a morphism iγδ∗M(γ) −→ M(δ) of quasi-coherent sheaves on
Xδ, or equivalently, a morphism M(γ) −→ i!γδM(δ) of quasi-coherent sheaves
on Xγ, is assigned;

(iv) such that for every triple of indices β < γ < δ, the triangle diagram
iβδ∗M(β) −→ iγδ∗M(γ) −→Mδ is commutative in Xδ–qcoh.

Morphisms of Γ-systems f : M −→ N on X are defined in the obvious way. We
denote the category of Γ-systems on X by (X,Γ)–syst.

For every γ ∈ Γ, denote by iγ : Xγ −→ X the natural closed immersion. As a
particular case of the construction of Section 2.6, we have the direct image functor
iγ∗ : Xγ–qcoh = Xγ–tors −→ X–tors. For every Γ-system M on X, we put

M+ = lim−→γ∈Γ
iγ∗M(γ) ∈ X–tors,

where M(γ) ∈ Xγ–qcoh, iγ∗M(γ) ∈ X–tors, and the direct limit is taken in the
category X–tors. Notice that, according to Section 2.5, all (filtered) direct limits
exist in X–tors.
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The quasi-coherent torsion sheaf M+ on X can be described more explicitly as
follows. For any reasonable closed subscheme Z ⊂ X, one has

(M+)(Z) = lim−→γ∈Γ:Z⊂Xγ
i!Z,γM(γ),

where the direct limit in Z–qcoh is taken over the cofinal subset of all γ ∈ Γ such
that Z ⊂ Xγ, and iZ,γ : Z −→ Xγ is the closed immersion.

Conversely, given a quasi-coherent torsion sheaf M on X, the rule M(γ) = M(Xγ)

defines a Γ-system M on X, which we will denote by M |Γ = M.

Lemma 2.5. The functor M 7−→ M+ : (X,Γ)–syst −→ X–tors is left adjoint to the
functor M 7−→M |Γ : X–tors −→ (X,Γ)–syst.

Proof. Let M be a Γ-system and N be a quasi-coherent torsion sheaf on X. Then
the abelian group of morphisms M+ −→ N in X–tors is isomorphic to the group of
all compatible collections of morphisms i!Z,γM(γ) −→ N(Z) in Z–qcoh, defined for all
reasonable closed subschemes Z ⊂ X and indices γ ∈ Γ such that Z ⊂ Xγ. On the
other hand, the abelian groups of morphisms M −→ N |Γ in (X,Γ)–syst is isomorphic
to the group of all compatible collections of morphisms M(γ) −→ N(Xγ) in Xγ–qcoh,
defined for all γ ∈ Γ. These are equivalent sets of data, as the morphism i!Z,γM(γ) −→
N(Z) is uniquely recoverable by applying the functor i!Z,γ : Xγ–qcoh −→ Z–qcoh to
the morphism M(γ) −→ N(Xγ). �

Proposition 2.6. The category (X,Γ)–syst of Γ-systems on X is a Grothendieck
abelian category.

Proof. The assertion that (X,Γ)–syst is an abelian category with exact direct limit
functors is straightforward. Moreover, the forgetful functor (X,Γ)–syst −→ Xγ–qcoh
taking a Γ-system M to the quasi-coherent sheaf M(γ) preserves the kernels, cokernels,
and direct limits. To show that the category (X,Γ)–syst has a set of generators, choose
for every γ ∈ Γ a set of generators Sγ ⊂ Xγ–qcoh in the Grothendieck category of
quasi-coherent sheaves on Xγ. For every quasi-coherent sheaf K on Xγ, define the
Γ-system M(γ,K) by the rules M(γ,K)(δ) = iγδ∗K for γ ≤ δ ∈ Γ and M(γ,K)(δ) = 0
for γ 6≤ δ ∈ Γ. Then all the objects of the form M(γ, S) with γ ∈ Γ and S ∈ Sγ form
a set of generators of the category (X,Γ)–syst. �

Lemma 2.7. The functor M 7−→M |Γ : X–tors −→ (X,Γ)–syst is fully faithful. The
endofunctor M 7−→M+|Γ : (X,Γ)–syst −→ (X,Γ)–syst is left exact.

Proof. The first assertion holds essentially because one can equivalently define a
quasi-coherent torsion sheaf on X as a collection of quasi-coherent sheaves on the
schemes Xγ, γ ∈ Γ, endowed with the usual maps and satisfying the usual con-
ditions, as per the discussion in Section 2.3. To check the second assertion, one
computes that

(M+|Γ)(γ) = lim−→δ∈Γ:γ≤δ i
!
γδM(δ)
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and recalls that the functor i!γδ is left exact (since it is a right adjoint). It is important
here that the forgetful functor assigning to a Γ-system N the collection of quasi-
coherent sheaves N(γ) (viewed as an object of the Cartesian product of the categories
Xγ–qcoh) is exact and faithful. �

Proposition 2.8. Let B be an abelian category and A ⊂ B be a full subcategory
whose inclusion functor G : A −→ B has a left adjoint functor F : B −→ A. Assume
that the composition GF : B −→ B is a left exact functor. Then the category A is
abelian and the functor F is exact. If B is a Grothendieck category, then so is A.

Proof. This well-known result describes a familiar setting which occurs, e. g., when
A is a sheaf category and B is the related presheaf category (so G is the inclusion
of the sheaves into the presheaves and F is the sheafification), or when an arbitrary
Grothendieck category A is represented as a localization of a module category B via
the Gabriel–Popescu theorem. The claim is that, in the context of the proposition,
the functor F represents A as a quotient category of B by its Serre subcategory of
all objects annihilated by F . Moreover, if A has coproducts, then the subcategory of
objects annihilated by F is closed under coproducts; and it follows that the direct
limits are exact in A whenever they are exact in B, and a set of generators exists in
A whenever such a set exists in B. The full subcategory A ⊂ B is called a Giraud
subcategory [60, Section X.1]; notice that the inclusion functor G : A −→ B is left
exact, but not exact in general. �

Proof of Theorem 2.4. Put A = X–tors and B = (X,Γ)–syst. Furthermore, put
G(M ) = M |Γ and F (M) = M+. Then the category B is Grothendieck by Propo-
sition 2.6, the functor F is left adjoint to G by Lemma 2.5, the functor G is fully
faithful by Lemma 2.7, and the functor GF is left exact by the same Lemma 2.7.
Thus Proposition 2.8 is applicable, implying that A is a Grothendieck category. �

Question 2.9. Is the reasonableness assumption needed for the validity of Theo-
rem 2.4 ? Is the category of quasi-coherent torsion sheaves on an arbitrary (strict)
ind-scheme abelian? Notice that the category of discrete R-modules, as defined in
Section 2.4(6), is a Grothendieck abelian category for any topological ring R.

2.8. Inverse images. Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme represented

by an inductive system of closed immersions of reasonable closed subschemes. Let
f : Y −→ X be a morphism of ind-schemes which is “representable by schemes”. Put
Yγ = Y×X Xγ; then Yγ are reasonable closed subschemes in Y and Y = “lim−→”

γ∈Γ
Yγ.

Let M = (M(γ) ∈ Xγ–qcoh)γ∈Γ be a Γ-system on X. For every γ ∈ Γ, put N(γ) =
f ∗γM(γ) ∈ Yγ–qcoh, where fγ : Yγ −→ Xγ. Then it is clear from Lemma 2.3(b) that
the collection of quasi-coherent cosheaves N(γ) ∈ Yγ–qcoh has a natural structure of
a Γ-system N on Y. We put f ∗M = N.

The functor of inverse image of quasi-coherent torsion sheaves f ∗ : X–tors −→
Y–tors is defined by the rule

f ∗(M ) = (f ∗(M |Γ))+.
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One check directly or deduce from Lemma 2.10(b) that this construction of the func-
tor f ∗ : X–tors −→ Y–tors does not depend on the choice of a representation of a
reasonable ind-scheme X by an inductive system of closed immersions of reasonable
closed subschemes (Xγ)γ∈Γ. (See Remark 7.4 below for a simpler construction of the
functor f ∗ in the case of a flat morphism f .)

Let us also define the functor of direct image of Γ-systems f∗ : (Y,Γ)–syst −→
(X,Γ)–syst. Put f∗N = M, where N(γ) = f∗M(γ) for all γ ∈ Γ. It is clear that the
direct images of torsion sheaves and Γ-systems agree in the sense that (f∗N )|Γ '
f∗(N |Γ) for all N ∈ Y–tors (cf. Section 2.6).

Lemma 2.10. (a) The functor f ∗ : (X,Γ)–syst −→ (Y,Γ)–syst is left adjoint to the
functor f∗ : (Y,Γ)–syst −→ (X,Γ)–syst.

(b) The functor f ∗ : X–tors −→ Y–tors is left adjoint to the functor f∗ : Y–tors −→
X–tors.

Proof. Part (a): let M be a Γ-system on X and N be a Γ-system on Y. Then the
group of morphisms M −→ f∗N in (X,Γ)–syst is isomorphic to the group of all
compatible collections of morphisms M(γ) −→ fγ∗N(γ) in Xγ–qcoh, defined for all
γ ∈ Γ, while the group of morphism f ∗M −→ N in (Y,Γ)–syst is isomorphic to the
group of all compatible collections of morphisms f ∗γM(γ) −→ N(γ) in Yγ–qcoh, defined
for all γ ∈ Γ. In view of the adjunction of the functors fγ∗ : Yγ–qcoh −→ Xγ–qcoh
and f ∗γ : Xγ–qcoh −→ Yγ–qcoh, these are two equivalent sets of data.

Part (b): let M be a quasi-coherent torsion sheaf on X and N be a quasi-coherent
torsion sheaf on Y. Then we have

HomX–tors(M , f∗N ) ' Hom(X,Γ)–syst(M |Γ, (f∗N )|Γ)

' Hom(X,Γ)–syst(M |Γ, f∗(N |Γ)) ' Hom(Y,Γ)–syst(f
∗(M |Γ),N |Γ)

' HomY–tors(f
∗(M |Γ)+,N ) = HomY–tors(f

∗M ,N ),

where the first isomorphism holds by Lemma 2.7, the middle one by part (a), and
the next one by Lemma 2.5. �

Lemma 2.11. The functors (−)+ commute with inverse images; in other words,
for any Γ-system M on X there is a natural isomorphism of quasi-coherent torsion
sheaves f ∗(M+) ' (f ∗M)+ on Y.

Proof. In view of the adjunctions of Lemma 2.10, the desired natural isomorphism is
adjoint to the natural isomorphism of (f∗N )|Γ ' (f∗N |Γ) of Γ-systems on X for a
quasi-coherent torsion sheaf N on Y. �

Let i : Z −→ X be a closed immersion of ind-schemes. Assume that X is a rea-
sonable ind-scheme; then so is Z. The functor i! : X–tors −→ Z–tors is defined by
the rule (i!M )(W ) = k!(M(Y )) for all M ∈ X–tors, where W ⊂ Z is an arbitrary
reasonable closed subscheme and Y ⊂ X is a reasonable closed subscheme such that

the composition W −→ Z
i−→ X factorizes as W

k−→ Y −→ X.
Let X = “lim−→”

γ∈Γ
Xγ be a representation of X by an inductive system of closed im-

mersions of reasonable closed subschemes. Put Zγ = Z×XXγ; then Zγ are reasonable
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closed subschemes in Z and Z = “lim−→”
γ∈Γ

Zγ. The functor i! : X–tors −→ Z–tors can

be described in these terms by the rule (i!M )(Zγ) = i!γM(Xγ), where iγ denotes the
closed immersion of schemes iγ : Zγ −→ Xγ.

Lemma 2.12. The functor i! : X–tors −→ Z–tors is right adjoint to the direct image
functor i∗ : Z–tors −→ X–tors.

Proof. Similar to the proof of Lemma 2.10(a). �

In particular, let Z ⊂ X be a reasonable closed subscheme with the closed immer-
sion morphism i : Z −→ X. Then, by the definition, one has i!M = M(Z) ∈ Z–qcoh
for every M ∈ X–tors.

Notice that the functor i! : X–tors −→ Z–qcoh preserves direct limits when Z is a
reasonable closed subscheme in X (as it is clear from the discussion in Section 2.5).
For nonreasonable closed subschemes Z ⊂ X, this is not true in general.

2.9. Injective quasi-coherent torsion sheaves. Let X = “lim−→”
γ∈Γ

Xγ be a reason-

able ind-scheme represented by an inductive system of closed immersions of reason-
able closed subschemes. Let iγ : Xγ −→ X denote the natural closed immersions.

According to Theorem 2.4, the category of quasi-coherent torsion sheaves X–tors is
a Grothendieck abelian category; so it has enough injective objects. Let us describe
these injectives.

Lemma 2.13. (a) A morphism f : M −→ N in the abelian category X–tors is a
monomorphism if and only if, for every γ ∈ Γ, the morphism i!γf : i!γM −→ i!γN is
a monomorphism in the abelian category Xγ–qcoh.

(b) A morphism f : M −→ N in the abelian category X–tors is an epimorphism
whenever, for every γ ∈ Γ, the morphism i!γf : i!γM −→ i!γN is an epimorphism in
the abelian category Xγ–qcoh.

Proof. Part (a): for any closed immersion of ind-schemes i : Z −→ X, the functor
i! : X–tors −→ Z–tors is left exact, since it has a left adjoint functor i∗ : Z–tors −→
X–tors. In particular, for a closed subscheme Z in X with the closed immersion
morphism i : Z −→ X, the functor i! : X–tors −→ Z–qcoh is left exact. This proves
the “only if” assertion.

To prove the “if”, assume that the morphism i!γf is a monomorphism in Xγ–qcoh

for every γ ∈ Γ. Let K be the kernel of f in X–tors. Then i!γK is the kernel

of the morphism i!γf in Xγ–qcoh, since the functor i!γ is left exact. So we have

K(Xγ) = i!γK = 0 for all γ ∈ Γ, and it follows immediately that K = 0.

Part (b): assume that the morphism i!γf is an epimorphism in Xγ–qcoh for ev-
ery γ ∈ Γ. This means that f |Γ : M |Γ −→ N |Γ is an epimorphism of Γ-systems
on X. Since the functor (−)+ : (X,Γ)–syst −→ X–tors is (right) exact, it follows that
(fΓ)+ : (M |Γ)+ −→ (N |Γ)+ is an epimorphism in X–tors. It remains to recall that
the adjunction (fΓ)+ −→ f is an isomorphism. �

Lemma 2.14. Let A, B be an abelian categories and F : A −→ B be a fully faithful
exact functor which has a right adjoint functor H : B −→ A. Then the essential image
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F (A) ⊂ B is a full subcategory closed under subobjects and quotients in B if and only
if the adjunction morphism FH(B) −→ B is a monomorphism in B for every B ∈ B.

Proof. Notice that the essential image of a fully faithful exact functor between abelian
categories is always a full subcategory closed under kernels and cokernels. Hence f(A)
is closed under subobjects in B if and only if it is closed under quotients. Now we
can proceed with a proof of the lemma.

“If”: let A ∈ F (A) be an object and A −→ B be an epimorphism in B. Then
the adjunction morphism FH(A) −→ A is an isomorphism, and it follows from
commutativity of the obvious diagram that the adjunction morphism FH(B) −→ B
is an epimorphism. Since the morphism FH(B) −→ B is a monomorphism by
assumption, it is an isomorphism. Thus B ∈ F (A).

“Only if”: let B ∈ B be an object and c : FH(B) −→ B be the adjunction mor-
phism. Let C ∈ B be the image of c. Then C is a quotient object of an object
from F (A); by assumption, it follows that C ∈ F (A). Given an object B ∈ B, the
object FH(B) ∈ F (A) together with the morphism c is characterized by the univer-
sal property that any morphism into B from an object of F (A) factorizes uniquely
through c. Now the monomorphism C −→ B has the same universal property; hence
the epimorphism FH(B) −→ C is an isomorphism and c is a monomorphism. �

Lemma 2.15. Let A be a Grothendieck abelian category with a set of generators
S ⊂ A. Then an object J ∈ A is injective if and only if any morphism into J from a
subobject of any object S ∈ S can be extended to a morphism S −→ J in A.

Proof. This is a categorical version of the Baer criterion of injectivity of modules,
provable in the same way using the Zorn lemma. �

Lemma 2.16. (a) For any closed subscheme Z ⊂ X with the closed immersion
morphism i : Z −→ X, the direct image functor i∗ : Z–qcoh −→ X–tors is exact and
fully faithful. Its essential image is closed under subobjects and quotients in the
abelian category X–tors.

(b) For every γ ∈ Γ, choose a set of generators Sγ ⊂ Xγ–qcoh of the abelian
category of quasi-coherent sheaves on Xγ. Then the set S ⊂ X–tors of all quasi-
coherent torsion sheaves of the form iγ∗S, where γ ∈ Γ and S ∈ Sγ, is a set of
generators of the abelian category X–tors.

Proof. Part (a): more generally, let i : Z −→ X be a closed immersion of (reasonable)
ind-schemes. Then, following the discussion in Section 2.8, the direct image functor
i∗ : Z–tors −→ X–tors has adjoints on both sides, i∗ and i!; so i∗ is an exact functor.

Furthermore, let N be a quasi-coherent torsion sheaf on Z. Then, following the
construction in Section 2.6, the quasi-coherent torsion sheaf i∗N on X is defined by
the rule (i∗N )(Y ) = iY ∗(N(W )) for all reasonable closed subschemes Y ⊂ X, where
iY : W = Y ×X Z −→ Y . The quasi-coherent torsion sheaf i!i∗N on Z is described
by the rule (i!i∗N )(W ′) = k!iY ∗(N(W )) for all reasonable closed subschemes W ′ ⊂ W ,
where k : W ′ −→ Y is the composition W ′ −→ W −→ Y of the closed immersion
W ′ −→ W and the morphism iY : W −→ Y (which is also a closed immersion, by
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the definition of a closed immersion of ind-schemes). Clearly, the adjunction mor-
phism N −→ i!i∗N is an isomorphism in Z–tors (because the adjunction morphism
N(W ) −→ i!Y iY ∗N(W ) is an isomorphism in W–qcoh for every Y ; cf. Section 2.2). It
follows that the direct image functor i∗ is fully faithful.

Finally, let M be a quasi-coherent torsion sheaf on X. Then the quasi-coherent
torsion sheaf i!M on Z is defined as spelled out in Section 2.8. Hence the quasi-
coherent torsion sheaf i∗i

!M on X is described by the rule (i∗i
!M )(Y ) = iY ∗i

!
Y M(Y )

for all reasonable closed subschemes Y ⊂ X, where iY : W = Y ×X Z −→ Y . The
adjunction morphisms iY ∗i

!
Y M(Y ) −→M(Y ) are monomorphisms in Y –qcoh for all Y

(since iY is a closed immersion of schemes). By Lemma 2.13(a), it follows that
the adjunction morphism i∗i

!M −→ M is a monomorphism in X–tors. It remains
to apply Lemma 2.14 in order to conclude that the essential image of the functor
i∗ : Z–tors −→ X–tors is a full subcategory closed under subobjects and quotients.

Part (b): a set of generators of the abelian category (X,Γ)–syst was constructed
in the proof of Proposition 2.6. The subset S ⊂ X–tors is the image of this set
of generators under the functor M 7−→ M+ : (X,Γ)–syst −→ X–tors. This functor
is essentially surjective on objects, exact, and preserves coproducts (being a left
adjoint); hence the image of any set of generators under this functor is a set of
generators. (See the arguments in Section 2.7 for the details.)

Alternatively, one can notice that, for every quasi-coherent torsion sheaf M ∈
X–tors, the natural morphism∐

γ∈Γ
iγ∗i

!
γM −−→ M

is an epimorphism in X–tors (by Lemma 2.13(b)). Then the assertion easily follows.
�

Proposition 2.17. (a) For any closed subscheme Z ⊂ X with the closed immersion
morphism i : Z −→ X, the functor i! : X–tors −→ Z–qcoh takes injective objects to
injective objects.

(b) A quasi-coherent torsion sheaf J ∈ X–tors is an injective object in X–tors if
and only if, for every γ ∈ Γ, the quasi-coherent sheaf i!γJ ∈ Xγ–qcoh is an injective
object in Xγ–qcoh.

Proof. Part (a): more generally, for any closed immersion of (reasonable) ind-schemes
i : Z −→ X, the functor i∗ : Z–tors −→ X–tors is exact, as explained in the proof of
Lemma 2.16(a). The functor i! : X–tors −→ Z–tors is right adjoint to i∗; so it takes
injectives to injectives. Part (b): the “only if” assertion is provided by part (a). To
prove the “if”, one can apply Lemma 2.15 to the set of generators of the Grothendieck
category X–tors provided by Lemma 2.16(b). This shows that a quasi-coherent torsion
sheaf J on X is injective whenever, for any M ∈ Xγ–qcoh and a subobject K ⊂
iγ∗M, K ∈ X–tors, any morphism K −→ J can be extended to a morphism
iγ∗M −→ J in X–tors. By Lemma 2.16(a), there is a quasi-coherent subsheaf
N ⊂ M on Xγ such that K = iγ∗N . Now it suffices to extend a given morphism
N −→ i!γJ to a morphism M−→ i!γJ in Xγ–qcoh. �
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3. Flat Pro-Quasi-Coherent Pro-Sheaves

In this section we continue to follow [7, Sections 7.11.3–4].

3.1. Pro-quasi-coherent pro-sheaves. Let X be an ind-scheme. A pro-quasi-
coherent pro-sheaf P on X (called an “Op-module” in [7]) is the following set of
data:

(i) to every closed subscheme Y ⊂ X, a quasi-coherent sheaf P(Y ) on Y is as-
signed;

(ii) to every pair of closed subschemes Y , Z ⊂ X, Z ⊂ Y with the closed
immersion morphism iZY : Z −→ Y , a morphism P(Y ) −→ iZY ∗P

(Z) of quasi-
coherent sheaves on Y is assigned;

(iii) such that the corresponding morphism i∗ZYP
(Y ) −→ P(Z) of quasi-coherent

sheaves on Z is an isomorphism;
(iv) and, for every triple of closed subschemes Y , Z, W ⊂ X, W ⊂ Z ⊂ Y ,

the triangle diagram P(Y ) −→ iZY ∗P
(Z) −→ iWY ∗P

(W ) is commutative in
Y –qcoh.

Let X = “lim−→”
γ∈Γ

Xγ be a representation of X by a inductive system of closed

immersions of schemes. Then, in order to construct a pro-quasi-coherent pro-sheaf
P on X, it suffices to specify the quasi-coherent sheaves P(Xγ) ∈ Xγ–qcoh for every
γ ∈ Γ and the morphisms P(Xδ) −→ iXγXδ∗P

(Xγ) for every γ < δ ∈ Γ satisfying
conditions (iii–iv) for W = Xβ, Z = Xγ, Y = Xδ, β < γ < δ ∈ Γ. The quasi-
coherent sheaves P(Y ) for all the other closed subsechemes Y ⊂ X and the related
morphisms (ii) can then be uniquely recovered so that conditions (iii–iv) are satisfied
for all closed subschemes in X.

Morphisms of pro-quasi-coherent pro-sheaves f : P −→ Q on X are defined in the
obvious way. We denote the additive category of quasi-coherent torsion sheaves on
X by X–pro. The following example shows that the category X–pro is usually not
abelian, and generally not homologically well-behaved. In this paper, we will be
interested in certain (better behaved) full subcategories in X–pro.

Example 3.1. Let X = SpiZp be the ind-affine ind-scheme from Example 1.4(2).
Then the category X–pro is equivalent to the category of p-adically separated and
complete abelian groups (cf. Section 2.4(2)). Here an abelian group P is said to
be p-adically separated and complete if its natural map to its p-adic completion
P −→ lim←−r≥0

P/prP is an isomorphism. The equivalence of categories assigns to

every p-adically separated and complete abelian group P the pro-quasi-coherent pro-
sheaf P with the quasi-coherent sheaf P(Xr) corresponding to the Z/prZ-module
P/prP (for the closed subscheme Xr = SpecZ/prZ ⊂ SpiZp = X). Conversely, to
every pro-quasi-coherent pro-sheaf P on SpiZp, the p-adically separated and complete
abelian group P = lim←−r≥0

P(Xr)(Xr) is assigned.

The category of p-adically separated and complete abelian groups (known also
as separated p-contramodules) is not abelian [49, Example 2.7(1)]. So the category
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(SpiZp)–pro is not abelian. Similarly, the category (Spik[[x]])–pro (for the ind-affine
ind-scheme X = Spik[[x]] from Example 1.5(1)) is not abelian, either.

On the other hand, for any ind-scheme X, the category X–pro has a natural (as-
sociative, commutative, and unital) tensor category structure. The tensor product
P⊗X Q ∈ X–pro of two pro-quasi-coherent pro-sheaves P and Q ∈ X–pro is defined
by the rule (P⊗XQ)(Z) = P(Z)⊗OZ Q(Z) ∈ Z–qcoh for all closed subschemes Z ⊂ X.
As the inverse images of quasi-coherent sheaves preserve their tensor products, the
construction of the structure (iso)morphism (ii–iii) for P⊗X Q is obvious. The unit
object of this tensor structure is the “pro-structure pro-sheaf” OX ∈ X–pro, defined
by the rule (OX)(Z) = OZ for all closed subschemes Z ⊂ X.

The aim of the next Section 3.2 is to construct a structure of module category over
X–pro on the category of quasi-coherent torsion sheaves X–tors.

3.2. Action of pro-sheaves in torsion sheaves. Let X = “lim−→”
γ∈Γ

Xγ be a rea-

sonable ind-scheme represented by an inductive system of closed immersions of rea-
sonable closed subschemes. We start with considering the category (X,Γ)–syst of
Γ-systems on X (as defined in Section 2.7) and constructing a structure of module
category over X–pro on (X,Γ)–syst.

Let P ∈ X–pro be a pro-quasi-coherent pro-sheaf and M ∈ (X,Γ)–syst be a
Γ-system on X. The Γ-system P⊗X M on X is defined by the rule

(P⊗X M)(γ) = P(Xγ) ⊗OXγ M(γ).

The structure morphism iγδ∗((P⊗XM)(γ)) −→ (P⊗XM)(δ) from Section 2.7, item (ii),
is constructed as the composition

iγδ∗(P
(Xγ) ⊗OXγ M(γ)) ' iγδ∗(i

∗
γδP

(Xδ) ⊗OXγ M(γ))

' P(Xδ) ⊗OXδ iγδ∗M(γ) −−→ P(Xδ) ⊗OXδ M(δ)

of the isomorphism iγδ∗(P
(Xγ) ⊗OXγ M(γ)) ' iγδ∗(i

∗
γδP

(Xδ) ⊗OXγ M(γ)) induced by

the structure isomorphism P(Xγ) ' i∗γδP
(Xδ), the “projection formula” isomorphism

iγδ∗(i
∗
γδP

(Xδ) ⊗OXγ M(γ)) ' P(Xδ) ⊗OXδ iγδ∗M(γ), and the morphism P(Xδ) ⊗OXδ
iγδ∗M(γ) −→ P(Xδ) ⊗OXδ M(δ) induced by the structure morphism iγδ∗M(γ) −→M(δ).

The tensor product functor

⊗X : X–pro× (X,Γ)–syst −−→ (X,Γ)–syst

endows the category of Γ-systems on X with the structure of an associative, unital
module category over the tensor category of pro-quasi-coherent pro-sheaves X–pro.

The following lemma plays a key role.

Lemma 3.2. Let P ∈ X–pro be a pro-quasi-coherent prosheaf and M be a Γ-system
on X whose associated quasi-coherent torsion sheaf vanishes, M+ = 0. Then the
quasi-coherent torsion sheaf associated with the Γ-system P ⊗X M also vanishes,
(P⊗X M)+ = 0.

Proof. The proof is straightforward. �
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Recall from the proof of Proposition 2.8 that the functor M 7−→ M+ : (X,Γ)–syst
−→ X–tors represents the category of quasi-coherent torsion sheaves X–tors as the
abelian quotient category of the category of Γ-systems (X,Γ)–syst by the Serre sub-
category of all Γ-systems annihilated by this functor. In view of Lemma 3.2, it
follows that, for any P ∈ X–pro, the tensor product functor P⊗X− : (X,Γ)–syst −→
(X,Γ)–syst descends uniquely along the functor M −→M+, leading to a tensor prod-
uct functor X–tors −→ X–tors, which we denote by the same symbol P⊗X − .

Explicitly, for any P ∈ X–pro and M ∈ X–tors we put

P⊗X M = (P⊗X M |Γ)+ = lim−→γ∈Γ
iγ∗(P

(Xγ) ⊗OXγ M(Xγ)) ∈ X–tors,

where iγ : Xγ −→ X is the closed immersion morphism and iγ∗ : Xγ–qcoh −→ X–tors
is the direct image functor. Clearly, this construction of the tensor product of a
pro-quasi-coherent pro-sheaf and a quasi-coherent torsion sheaf does not depend on
the choice of a representation of a reasonable ind-scheme X by an inductive system
(Xγ)γ∈Γ of closed immersions of reasonable closed subschemes.

The resulting tensor product functor

⊗X : X–pro× X–tors −−→ X–tors

endows the category of quasi-coherent torsion sheaves X–tors with the structure of
an associative, unital module category over the tensor category of pro-quasi-coherent
pro-sheaves X–pro.

In the sequel, we will sometimes switch the two arguments of the functor ⊗X,
writing ⊗X : X–tors× X–pro −→ X–tors.

3.3. Inverse and direct images. Let f : Y −→ X be a morphism of ind-schemes.
The functor of inverse image of pro-quasi-coherent pro-sheaves f ∗ : X–pro −→ Y–pro
is defined by the rule (f ∗P)(W ) = g∗(P(Z)) for all P ∈ X–pro, where W ⊂ Y in an ar-
bitrary closed subscheme and Z ⊂ X is a closed subscheme such that the composition

W −→ Y
f−→ X factorizes as W

g−→ Z −→ X.
The inverse image functor

f ∗ : X–pro −−→ Y–pro

is a tensor functor between the tensor categories X–pro and Y–pro, taking the unit
object OX ∈ X–pro to the unit object OY ∈ Y–pro.

In particular, if Y ⊂ X is a closed subscheme with the closed immersion morphism
i : Y −→ X, then one has i∗P = P(Y ) in Y –qcoh for every P ∈ X–pro.

Part (a) of the following lemma is a generalization of Lemma 2.3(b) (with the roles
of the schemes Y and Z switched).
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Lemma 3.3. Let f : Y −→ X and h : Z −→ X be morphisms of (concentrated)
schemes. Consider the pullback diagram

Z ×X Y
k
//

g

��

Y

f

��

Z
h

// X

Assume that either
(a) the morphism f is affine, or
(b) the morphism h is flat.

Then there is a natural isomorphism h∗f∗ ' g∗k
∗ of functors Y –qcoh −→ Z–qcoh.

Proof. Part (a) is [20, Tag 02KG]. The assertion is local in X and Z, so it reduces
to the case of affine schemes, for which it means the following. Let R −→ S and
R −→ T be homomorphisms of commutative rings. Then, for any S-module N ,
there is a natural isomorphism of T -modules T ⊗R N ' (T ⊗R S)⊗S N . Part (b) is
a particular case of [20, Tag 02KH]. �

Let f : Y −→ X be an affine morphism of ind-schemes (as defined in Section 1.3).
Let Q be a pro-quasi-coherent pro-sheaf on Y. For every closed subscheme Z ⊂ X,
put P(Z) = fZ∗(Q

(W )) ∈ Z–qcoh, where fZ is the affine morphism of schemes W =
Z ×X Y −→ Z. Then it is clear from Lemma 3.3(a) that the collection of quasi-
coherent sheaves P(Z) with the natural maps P(Z′′) −→ iZ′Z′′∗P

(Z′) for Z ′ ⊂ Z ′′ ⊂ X
is a pro-quasi-coherent pro-sheaf P on X.

Put f∗Q = P. This construction defines the functor of direct image of pro-quasi-
coherent pro-sheaves f∗ : Y–pro −→ X–pro with respect to an affine morphism of
ind-schemes f : Y −→ X. The functor f∗ is right adjoint to the inverse image functor
f ∗ : X–pro −→ Y–pro (as one can show similarly to the proof of Lemma 2.10(a)).

Furthermore, for any affine morphism of ind-schemes f : Y −→ X, the following
projection formula isomorphism holds naturally

(2) f∗(f
∗P⊗Y Q) ' P⊗X f∗Q

for all P ∈ X–pro and Q ∈ Y–pro.

Lemma 3.4. Let f : Y −→ X be a morphism of reasonable ind-schemes which is
“representable by schemes”. Let P a pro-quasi-coherent pro-sheaf on X and M be a
quasi-coherent torsion sheaf on X. Then there is a natural isomorphism

f ∗(P⊗X M ) ' f ∗P⊗Y f
∗M

of quasi-coherent torsion sheaves on Y.
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Proof. The isomorphism f ∗(P ⊗X M) ' f ∗P ⊗Y f ∗M of Γ-systems on Y for any
Γ-system M on X is obvious from the definitions. Now we have

f ∗(P⊗X M ) = f ∗((P⊗X M |Γ)+) ' (f ∗(P⊗X M |Γ))+

' (f ∗P⊗Y f
∗(M |Γ))+ ' f ∗P⊗Y (f ∗(M |Γ))+

' f ∗P⊗Y f
∗((M |Γ)+) ' f ∗P⊗Y f

∗M

by the definition of the functors ⊗X : X–pro × X–tors −→ X–tors and ⊗Y : Y–pro ×
Y–tors −→ Y–tors, and by Lemma 2.11. The point is that both the inverse image
and the tensor product functors in question commute with the functors (−)+. �

For two versions of projection formula related to Lemma 3.4, see Lemmas 7.5
and 8.2 below.

3.4. Flat pro-quasi-coherent pro-sheaves. For any scheme X, let us denote by
X–flat the full subcategory of flat quasi-coherent sheaves in X–qcoh. Then, for
any morphism of schemes k : Z −→ X, the inverse images functor k∗ : X–qcoh −→
Z–qcoh takes X–flat into Z–flat. Furthermore, for any short exact sequence 0 −→
F −→ G −→ H −→ 0 in X–qcoh with F , G, H ∈ X–flat, the short sequence
0 −→ k∗F −→ k∗G −→ k∗H −→ 0 is exact in Z–qcoh.

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme represented by an inductive system of closed

immersions of schemes. A pro-quasi-coherent pro-sheaf F on X is said to be flat if the
quasi-coherent sheaf F(Z) on Z is flat for every closed subscheme Z ⊂ X. It is clear
from the previous paragraph that F is flat whenever the quasi-coherent sheaf F(Xγ) on
Xγ is flat for every γ ∈ Γ. We denote the full subcategory of flat pro-quasi-coherent
pro-sheaves by X–flat ⊂ X–pro.

Let 0 −→ F −→ G −→ H −→ 0 be a short sequence of flat pro-quasi-coherent
pro-sheaves on X. We say that this is an (admissible) short exact sequence in X–flat
if, for every closed subscheme Z ⊂ X, the sequence of quasi-coherent sheaves 0 −→
F(Z) −→ G(Z) −→ H(Z) −→ 0 is exact in the abelian category Z–qcoh. It suffices
to check this condition for the closed subschemes Z = Xγ, γ ∈ Γ, belonging to any
chosen representation of X by an inductive system of closed immersions of schemes.

An exact category (in the sense of Quillen) is an additive category endowed with
a class of admissible short exact sequences (also called conflations) satisfying natural
axioms. For a reference, see [8] or [42, Appendix A].

Proposition 3.5. The category X–flat of flat pro-quasi-coherent pro-sheaves on X,
endowed with the class of admissible short exact sequences defined above, is an exact
category in the sense of Quillen.

Proof. First of all, in the particular case when X = X is a scheme, the full sub-
category X–flat ⊂ X–qcoh, endowed with the class of all short sequences that are
exact in the abealian category X–qcoh, is an exact category, since X–flat is closed
under extensions in X–qcoh (see, e. g., [8, Lemma 10.20] or [42, Example A.5(3)(a)]).
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Moreover, the restriction functor k∗ : X–flat −→ Z–flat is exact (i. e., takes admissi-
ble short exact sequences to admissible short exact sequences) for any morphism of
schemes k : Z −→ X.

To prove the assertion for an ind-scheme X, consider the category of “generalized
pro-quasi-coherent pro-sheaves” on X, defined by items (i–iii) of Section 3.1 (with the
transitivity condition (iv) dropped). The definitions of a flat generalized pro-quasi-
coherent pro-sheaf and a short exact sequence of flat generalized pro-quasi-coherent
pro-sheaves are similar to the above. Then the category of flat generalized pro-quasi-
coherent pro-sheaves is exact, since it can be obtained by the construction of [42,
Example A.5(4)] applied to the following pair of exact functors∏

Z⊂X
Z–flat −−→

∏
Z⊂Y⊂X

Z–flat×
∏

Z⊂Y⊂X
Z–flat ←−−

∏
Z⊂Y⊂X

Z–flat.

Here Z and Y range over the closed subschemes in X. All the categories in the
diagram are exact, with termwise exact structures on the Cartesian products. The
first component

∏
Z⊂X Z–flat −→

∏
Z⊂Y⊂X Z–flat of the leftmost functor assigns to a

collection of flat quasi-coherent sheaves (FZ)Z⊂X the collection of flat quasi-coherent
sheaves (FZ)Z⊂Y⊂X. The second component

∏
Z⊂X Z–flat −→

∏
Z⊂Y⊂X Z–flat of the

leftmost functor assigns to a collection (FZ)Z⊂X the collection of flat quasi-coherent
sheaves (i∗ZYFY )Z⊂Y ∈X. The rightmost functor is the diagonal one.

Finally, the full subcategory of flat pro-quasi-coherent pro-sheaves is closed under
admissible subobjects and admissible quotients in the ambient exact category of flat
generalized pro-quasi-coherent pro-sheaves. So this full subcategory inherits an exact
category structure by [42, Example A.5(3)(b)]). �

Let f : Y −→ X be a morphism of ind-schemes. Then the inverse image func-
tor f ∗ : X–pro −→ Y–pro takes the full subcategory X–flat ⊂ X–pro into the full
subcategory Y–flat ⊂ Y–pro. The functor

f ∗ : X–flat −−→ Y–flat

is exact with respect to the exact category structures of X–flat and Y–flat (defined
above).

Let f : Y −→ X be a flat, affine morphism of ind-schemes (as defined in Sec-
tion 1.3). Then the direct image functor f∗ : Y–pro −→ X–pro takes the full subcat-
egory Y–flat ⊂ Y–pro into the full subcategory X–flat ⊂ X–pro. The functor

f∗ : Y–flat −→ X–flat

is exact with respect to the exact category structures on Y–flat and X–flat.
The tensor product of two flat pro-quasi-coherent pro-sheaves is flat. So the tensor

product functor ⊗X : X–pro× X–pro −→ X–pro restricts to a functor

⊗X : X–flat× X–flat −−→ X–flat,

defining a tensor category structure on X–flat. Notice that the “pro-structure pro-
sheaf” OX (which is the unit of the tensor structure on X–pro) belongs to X–flat. The
tensor product ⊗X of flat pro-quasi-coherent pro-sheaves on X is an exact functor with
respect to the exact category structure of X–flat.
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Assume that the ind-scheme X is reasonable. Then, restricting the tensor product
functor X–pro×X–tors −→ X–tors to flat pro-quasi-coherent pro-sheaves, one obtains
a tensor product functor

⊗X : X–flat× X–tors −→ X–tors,

which is exact with respect to the exact category structure of X–flat and the abelian
exact structure on X–tors.

Lemma 3.6. Let i : Z −→ X be a closed immersion of schemes and F , M be quasi-
coherent sheaves on X. Then there is a natural morphism of quasi-coherent sheaves
on Z

i∗F ⊗OZ i!M −−→ i!(F ⊗OXM),

which is an isomorphism whenever i(Z) is a reasonable closed subscheme in X and
F is a flat quasi-coherent sheaf on X.

Proof. When i(Z) is a reasonable closed subscheme in X, both the assertions are
local in X. So they reduce to the case of affine schemes, for which they mean the
following. Let R −→ S be a surjective homomorphism of commutative rings and F ,
M be R-modules. Then there is a natural homomorphism of S-modules

(S ⊗R F )⊗S HomR(S,M) = F ⊗R HomR(S,M) −−→ HomR(S, F ⊗RM)

which is an isomorphism whenever S is a finitely presented R-module and F is a flat
R-module.

To construct the desired morphism in the general case, let L be an arbitrary
quasi-coherent sheaf on Z, and let L −→ i∗F ⊗OZ i!M be a morphism in Z–qcoh.
Applying i∗, we produce a morphism i∗L −→ i∗(i

∗F ⊗OZ i!M) ' F ⊗OX i∗i!M in
X–qcoh, where the isomorphism holds by Lemma 2.2. Composing with the morphism
F ⊗OX i∗i!M−→ F ⊗OXM induced by the adjunction morphism i∗i

!M−→M, we
obtain a morphism i∗L −→ F ⊗OXM in X–qcoh, which corresponds by adjunction
to a morphism L −→ i!(F ⊗OXM) in Z–qcoh. �

Proposition 3.7. Let X be a reasonable ind-scheme, and let Z ⊂ X be a reasonable
closed subscheme with the closed immersion morphism i : Z −→ X. Let F be flat
pro-quasi-coherent pro-sheaf on X and M be a quasi-coherent torsion sheaf on X.
Then there is a natural isomorphism i!(F⊗X M ) ' i∗F⊗OZ i!M = F(Z)⊗OZ M(Z) in
Z–qcoh.

Proof. It follows from Lemma 3.6 that the rule N(Z) = F(Z) ⊗M(Z) defines a quasi-
coherent torsion sheaf N on X. Now it is clear that F⊗X M ' N . �

Examples 3.8. (1) This is a generalization of Example 3.1. Let R be complete,
separated topological commutative ring with a countable base of neighborhoods of
zero consisting of open ideals, and let X = SpiR be the related ind-affine ℵ0-ind-
scheme, as in Example 1.6(2). Then the category X–pro is equivalent to the cate-
gory of separated R-contramodules, as defined in [43, Section 1.2], [53, Sections 1.2
and 5], or [54, Section 6.2], and discussed in [44, Section D.1]. The category of
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separated R-contramodules R–separ is a full subcategory in the abelian category of
R-contramodules R–contra; so we have SpiR–pro ' R–separ ⊂ R–contra.

The equivalence assigns to a (separated) R-contramodule C the pro-quasi-coherent
pro-sheaf P with the components P(XI) = C/(IiC), and conversely, to a pro-quasi-
coherent pro-sheaf P the separated R-contramodule C = lim←−I⊂RP(XI) is assigned

(where I ranges over the open ideals in R, and the projective limit is taken in the
category of R-contramodules, which agrees with the projective limit in the category
of abelian groups). It is clear from [44, Lemma D.1.3] (see also [53, Lemma 6.3(a,c)])
that this is an equivalence of categories.

The generality level in [44, Section D.1] is that of complete, separated topological
associative rings with a countable base of neighborhoods of zero consisting of open
two-sided ideals. In [53, Section 6], only a (countable) base of open right ideals is
assumed, which makes the exposition more complicated.

(2) The equivalence of categories described in (1) restricts to an equivalence
between their full subcategories of flat pro-quasi-coherent pro-sheaves and flat
R-contramodules. Notice that any flat R-contramodule is separated [44, Corol-
lary D.1.7] (see also [53, Corollary 6.15]). The full subcategory of flat contramodules
R–flat (unlike the larger full subcategory of separated ones) is closed under ex-
tensions in the abelian category of R-contramodules R–contra [44, Lemma D.1.5]
(see also [53, Corollary 6.13 or Corollary 7.1(b)]), so it inherits an exact category
structure from the abelian exact category structure on R–contra. The equivalence
SpiR–flat ' R–flat is an equivalence of exact categories [44, Lemma D.1.4] (see
also [53, Lemma 6.7 or 6.10]).

(3) In the context of (1), assume that R is a reasonable topological ring in the sense
of Section 2.4(5). Then, according to Section 2.4(6), the category of quasi-coherent
torsion sheaves SpiR–tors is equivalent to the category of discrete R-modules R–discr.
This equivalence of categories, together with the equivalence SpiR–pro ' R–separ
from (1), transforms the tensor product functor ⊗X : SpiR–pro × SpiR–tors −→
SpiR–tors into the functor of contratensor product �R : R–contra × R–discr −→
R–discr (restricted to separated R-contramodules).

We refer to [44, Section D.2], [53, Definition 5.4], or [54, Section 7.2] for the def-
inition of the contratensor product of a discrete module and a contramodule over a
topological ring. In our context, the contratensor product takes values in discrete
R-modules (rather than just abelian groups) because the ring R is commutative.

(4) The contramodule tensor product functor ⊗R : R–contra × R–contra −→
R–contra on the category of contramodules over a commutative topological ring R
was defined in [43, Section 1.6]. According to [44, Lemma D.3.1] (which presumes
a countable base of neighborhoods of zero in R), this functor restricts to an exact
functor ⊗R : R–flat × R–flat −→ R–flat, which agrees with the functor of tensor
product of flat pro-quasi-coherent pro-sheaves ⊗X : X–flat× X–flat −→ X–flat under
the equivalence of (exact) categories X–flat ' R–flat.
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3.5. Coproducts and colimits. Let X be an ind-scheme. The coproduct of any
family of objects exists in the category X–pro. Specifically, let (Pθ)θ∈Θ be a family of
pro-quasi-coherent pro-sheaves on X, indexed by a set Θ. For every closed subscheme

Z ⊂ X, put Q(Z) =
⊕

θ∈Θ P
(Z)
θ (where the direct sum is taken in the category of quasi-

coherent sheaves on Z). Then the collection of quasi-coherent sheaves Q(Z) with the
obvious isomorphisms i∗ZYQ

(Y ) ' Q(Z) for Z ⊂ Y ⊂ X is a pro-quasi-coherent pro-
sheaf Q on X. One has Q =

∐
θ∈Θ Pθ in the category X–pro.

More generally, the colimit of any diagram of objects, indexed by a small category,
exists in X–pro. Let (Pθ)θ∈Θ be an inductive system of pro-quasi-coherent pro-sheaves
on X, indexed by a small category Θ. For every closed subscheme Z ⊂ X, put

Q(Z) = lim−→θ∈Θ
P

(Z)
θ (where the colimit is taken in the category of quasi-coherent

sheaves Z–qcoh). Notice that the inverse image functor with respect to any morphism
of schemes preserves all colimits of quasi-coherent sheaves. So the collection of quasi-
coherent sheaves Q(Z) with the induced isomorphisms i∗ZYQ

(Y ) ' Q(Z) for Z ⊂ Y ⊂ X
is a pro-quasi-coherent pro-sheaf Q on X. One has Q = lim−→θ∈Θ

Pθ in X–pro.

Both the tensor product functor ⊗X : X–pro × X–pro −→ X–pro (on any ind-
scheme X) and the action functor⊗X : X–pro×X–tors −→ X–tors (on a reasonable ind-
scheme X) preserve coproducts in both the categories. In fact, they even preserve all
colimits (as the action functor for Γ-systems ⊗X : X–pro× (X,Γ)–syst −→ (X,Γ)–syst
can be easily seen to preserve colimits).

The full subcategory X–flat is closed under coproducts in X–pro. In fact, it is closed
under all direct limits (of inductive systems indexed by directed posets), because
flatness of quasi-coherent sheaves is preserved by such direct limits. So all coproducts
and direct limits exist in X–flat. The direct limit (in particular, coproduct) functors
are exact in the exact category X–flat.

The inverse image functor f ∗ : X–pro −→ Y–pro with respect to any morphism
of ind-schemes f : Y −→ X preserves all colimits. So does the direct image func-
tor f∗ : Y–pro −→ X–pro with respect to an affine morphism of ind-schemes f . In
particular, both the functors preserve coproducts.

3.6. Pro-quasi-coherent commutative algebras. Let X be a scheme. A quasi-
coherent sheaf of algebras (or a quasi-coherent algebra for brevity) A over X is an
(associative and unital) algebra object in the tensor category X–qcoh. In other words,
A is a quasi-coherent sheaf on X endowed with morphisms of quasi-coherent sheaves
OX −→ A and A ⊗OX A −→ A satisfying the usual associativity and unitality
equations. The underlying sheaf of abelian groups of a quasi-coherent algebra has a
natural structure of a sheaf of rings.

Let f : Y −→ X be a morphism of (concentrated) schemes. Then the inverse
image f ∗ : X–qcoh −→ Y –qcoh is a tensor functor, so the inverse image f ∗A of any
quasi-coherent sheaf of algebras A on X is a quasi-coherent sheaf of algebras on Y .

Furthermore, for any quasi-coherent sheavesM andN on Y , there is a natural mor-
phism of quasi-coherent sheaves f∗M⊗OX f∗N −→ f∗(M⊗OY N ) on X, correspond-
ing by adjunction to the morphism of quasi-coherent sheaves f ∗(f∗M⊗OX f∗N ) '
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f ∗f∗M ⊗OY f ∗f∗N −→ M ⊗OY N on Y induced by the adjunction morphisms
f ∗f∗M −→ M and f ∗f∗N −→ N . In particular, for any quasi-coherent sheaf of
algebras B on Y , the composition f∗B⊗OX f∗B −→ f∗(B⊗OY B) −→ f∗B endows the
direct image f∗B of the quasi-coherent sheaf B with the structure of a quasi-coherent
sheaf of algebras on X.

A quasi-coherent commutative algebra (or a quasi-coherent sheaf of commutative
algebras) on X is a commutative (associative, and unital) algebra object in X–qcoh.
Clearly, the inverse and direct images preserve commutativity of quasi-coherent al-
gebras. The next lemma is quite standard and well-known.

Lemma 3.9. For any scheme X, there is a natural anti-equivalence between the
category of schemes Y endowed with an affine morphism Y −→ X and the category
of quasi-coherent commutative algebras on X. To an affine morphism f : Y −→ X,
the quasi-coherent commutative algebra f∗OY on X is assigned.

Proof. The inverse functor assigns to a quasi-coherent sheaf of algebras A on X the
scheme Y covered by the following affine schemes. For any affine open subscheme
U ⊂ X, the affine scheme SpecA(U) is an open subscheme in Y ; in fact, one has
SpecA(U) = U ×X Y , so SpecA(U) is the preimage of U in Y under f . The map of
the rings of sectionsOX(U) −→ A(U) induced by the unit morphismOX −→ A of the
quasi-coherent sheaf of algebras A induces the morphism of schemes SpecA(U) −→
U . For any pair of affine open subschemes U and V in X such that V ⊂ U , the
restriction map of the rings of sections A(U) −→ A(V ) of the sheaf of rings A on X
induces an open immersion SpecA(V ) −→ SpecA(U); this is the map V ×X Y −→
U ×X Y induced by the open immersion V −→ U . The key observation is that
V ×U SpecA(U) ' SpecA(V ) (as it should be), since OX(V )⊗OX(U) A(U) ' A(V ).
We leave further details to the reader. �

We will denote the affine scheme over X corresponding to a quasi-coherent algebra
A under the construction of Lemma 3.9 by Y = SpecX A. Notice that an affine
morphism of schemes f : Y −→ X is flat if and only if the quasi-coherent sheaf
A = f∗OY on X is flat.

Lemma 3.10. Let h : Z −→ X be a morphism of schemes and A be a quasi-
coherent commutative algebra over X. Then there is a natural isomorphism of
schemes SpecZ h

∗A ' Z ×X SpecX A. In other words, there is a natural pullback
diagram of schemes

SpecZ h
∗A k

//

g

��

SpecX A
f
��

Z
h

// X

where f and g are the structure morphisms of the schemes SpecX A and SpecZ h
∗A

affine over the schemes X and Z, respectively.

Proof. The question is essentially local in X and Z, so it reduces to the case of affine
schemes, for which it is obvious from the constructions. �
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Let A be a quasi-coherent algebra on a scheme X. Then a quasi-coherent module
(or a quasi-coherent sheaf of modules) over A is a module object over the algebra
object A in the tensor category X–qcoh. In other words, a quasi-coherent moduleM
over A is a quasi-coherent sheaf M ∈ X–qcoh endowed with a morphism of quasi-
coherent sheaves A ⊗OX M −→ M satisfying the usual associativity and unitality
equations. The underlying sheaf of abelian groups of a quasi-coherent module M
over A is a sheaf of modules over the underlying sheaf of rings of A.

Let f : Y −→ X be a morphism of schemes. Then, for any quasi-coherent module
M over a quasi-coherent algebra A on X, the inverse image f ∗M is a quasi-coherent
module over the quasi-coherent algebra f ∗A on Y . For any quasi-coherent module
N over a quasi-coherent algebra B on Y , the direct image f∗N is a quasi-coherent
module over the quasi-coherent algebra f∗B on X. The constructions are similar to
the above constructions for algebras.

Furthermore, let i : Z −→ X be a closed immersion of schemes, and let M be a
quasi-coherent module over a quasi-coherent algebra A on X. Then the composi-
tion i∗A ⊗OZ i!M −→ i!(A ⊗OX M) −→ i!M of the morphism i∗A ⊗OZ i!M −→
i!(A⊗OXM) from Lemma 3.6 and the morphism i!(A⊗OXM) −→ i!M induced by
the structure morphism A⊗OXM−→M endows the quasi-coherent sheaf i!M with
the structure of a quasi-coherent module over the quasi-coherent algebra i∗A on Z.

Lemma 3.11. Let f : Y −→ X be an affine morphism of schemes. Then the category
of quasi-coherent sheaves on Y is equivalent to the category of quasi-coherent modules
over the quasi-coherent algebra f∗OY on X. To a quasi-coherent sheaf N on Y , the
quasi-coherent f∗OY -module f∗N ∈ X–qcoh is assigned.

Proof. Put A = f∗OY . The inverse functor assigns to a quasi-coherent A-module
M on X the following quasi-coherent sheaf N on Y . For any affine open subscheme
U ⊂ X, the restriction of N to the affine open subscheme U ×X Y = SpecA(U) in Y
is the quasi-coherent sheaf on SpecA(U) corresponding to the A(U)-module M(U).
We omit further details. �

Let X be an ind-scheme. A pro-quasi-coherent pro-sheaf of algebras (or a pro-
quasi-coherent algebra) A over X is algebra object in the tensor category X–pro. In
other words, A is a pro-quasi-coherent pro-sheaf on X endowed with morphisms of
pro-quasi-coherent pro-sheaves OX −→ A and A ⊗X A −→ A satisfying the usual
(associativity and unitality, and if mentioned, commutativity) equations.

It is clear from the construction of the tensor product of pro-quasi-coherent pro-
sheaves in Section 3.1 that the datum of a pro-quasi-coherent algebra A on X is
equivalent to the datum of a quasi-coherent algebra A(Z) on every closed subscheme
Z ⊂ X together with a compatible system of isomorphisms of quasi-coherent algebras
A(Z′) ' i∗Z′Z′′A

(Z′′) for every pair of closed subschemes Z ′ ⊂ Z ′′ ⊂ X with the closed
immersion iZ′Z′′ : Z

′′ −→ Z ′′.
Let f : Y −→ X be a morphism of ind-schemes and A be a pro-quasi-coherent

algebra on X. Then the inverse image f ∗ : X–pro −→ Y–pro is a tensor functor,
hence f ∗A is a pro-quasi-coherent algebra on Y.
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Let f : Y −→ X be an affine morphism of ind-schemes, and let B be a pro-
quasi-coherent algebra on Y. Then an adjunction argument similar to the above one
for schemes shows how to construct an algebra structure on the pro-quasi-coherent
pro-sheaf f∗B on X.

Proposition 3.12. For any ind-scheme X, there is a natural anti-equivalence between
the category of ind-schemes Y endowed with an affine morphism Y −→ X and the
category of pro-quasi-coherent commutative algebras on X. To an affine morphism
f : Y −→ X, the pro-quasi-coherent commutative algebra f∗OY on X is assigned.

Proof. Let X = “lim−→”
γ∈Γ

Xγ be an inductive system of closed immersions of schemes

representing X. The inverse functor to the one mentioned in the proposition assigns
to a pro-quasi-coherent algebra A on X the ind-scheme Y represented by the inductive
system of closed immersions of schemes Y = “lim−→”

γ∈Γ
Yγ, where Yγ = SpecXγ A

(Xγ)

(see Lemma 3.9). The transition morphisms Yγ −→ Yδ for γ < δ ∈ Γ are provided by
Lemma 3.10, and it is also clear from Lemma 3.10 that the morphism of ind-schemes
Y −→ X constructed in this way is affine. �

We will denote the affine ind-scheme over X corresponding to a pro-quasi-coherent
algebra A under the construction of Proposition 3.12 by Y = SpiX A. Notice that an
affine morphism of ind-schemes f : Y −→ X is flat if and only the pro-quasi-coherent
pro-sheaf A = f∗OY on X is flat.

Let A be a pro-quasi-coherent algebra over an ind-scheme X. Then a pro-quasi-
coherent module (or a pro-quasi-coherent pro-sheaf of modules) over A is a module
over the algebra object A in the tensor category X–pro. In other words, a pro-quasi-
coherent module M over A is a pro-quasi-coherent pro-sheaf M ∈ X–pro endowed
with a morphism of pro-quasi-coherent pro-sheaves A ⊗X M −→ M satisfying the
usual associativity and unitality equations.

The datum of a pro-quasi-coherent module M over a given pro-quasi-coherent
algebra A on X is equivalent to the datum of a quasi-coherent module M(Z) over
the quasi-coherent algebra A(Z) on every closed subscheme Z ⊂ X together with a
compatible system of isomorphisms of quasi-coherent modules M(Z′) ' i∗Z′Z′′M

(Z′′)

for every pair of closed subschemes Z ′ ⊂ Z ′′.
Let X be a reasonable ind-scheme and A be a pro-quasi-coherent algebra over X.

Then a quasi-coherent torsion module (or a quasi-coherent torsion sheaf of modules)
over A is a module object in the module category X–tors over the algebra object A
in the tensor category X–pro. In other words, a quasi-coherent torsion module M
over A is a quasi-coherent torsion sheaf M ∈ X–tors endowed with a morphism of
quasi-coherent torsion sheaves A⊗X M −→M satisfying the usual associativity and
unitality equations.

Let X = “lim−→”
γ∈Γ

Xγ be a representation of X by an inductive system of closed

immersions of reasonable closed subschemes. Then, for any quasi-coherent sheaf M
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on X, one has

HomX–tors(A⊗X M , M ) ' HomX–tors((A⊗X M |Γ)+, M )

' Hom(X,Γ)–syst(A⊗X M |Γ, M |Γ).

Hence the datum of a quasi-coherent torsion module M over a given quasi-coherent
algebra A on X is equivalent to the datum of a quasi-coherent module M(Xγ) over the

quasi-coherent algebra A(Xγ) on the scheme Xγ for every γ ∈ Γ, together with a com-
patible system of quasi-isomorphisms of quasi-coherent modules M(Xγ) ' i!γδM(Xδ)

for every γ < δ ∈ Γ (where iγδ : Xγ −→ Xδ is the closed immersion).
Let f : Y −→ X be a morphism of ind-schemes. Let A be a pro-quasi-coherent

algebra on X and M be a pro-quasi-coherent module over A. Then the inverse image
f ∗M is a pro-quasi-coherent module over the pro-quasi-coherent algebra f ∗M on Y.
Furthermore, assume that f is “representable by schemes” and X is a reasonable
ind-scheme, and let M be a quasi-coherent torsion module over A. Then it is clear
from Lemma 3.4 that the inverse image f ∗M is a quasi-coherent torsion module over
the pro-quasi-coherent algebra f ∗A.

Let f : Y −→ X be an affine morphism of ind-schemes. Let B be a pro-quasi-
coherent algebra on Y and N be a pro-quasi-coherent module over B. Then the
direct image f∗N is a pro-quasi-coherent module over the pro-quasi-coherent algebra
f∗B on X. Furthermore, assume that X is a reasonable ind-scheme, and let N be
a quasi-coherent torsion modules over B. Then the direct image f∗N is a quasi-
coherent torsion module over the pro-quasi-coherent algebra f∗B.

Proposition 3.13. Let f : Y −→ X be an affine morphism of ind-schemes. Then
(a) the category of pro-quasi-coherent pro-sheaves on Y is equivalent to the category

of pro-quasi-coherent modules over the pro-quasi-coherent algebra f∗OY on X;
(b) if the ind-scheme X is reasonable, then the category of quasi-coherent torsion

sheaves on Y is equivalent to the category of quasi-coherent torsion modules over the
pro-quasi-coherent algebra f∗OY on X.

Proof. In part (a), to a pro-quasi-coherent pro-sheaf N on Y, the pro-quasi-coherent
f∗OY-module f∗N is assigned. To construct the inverse functor, let M be a pro-
quasi-coherent module over f∗OY on X, and let Z ⊂ X be a closed subscheme;
put W = Z ×X Y, and denote by fZ : W −→ Z the natural morphism. Then, for
the corresponding pro-quasi-coherent pro-sheaf N on Y, the quasi-coherent sheaf
N(W ) ∈ W–qcoh corresponds to the quasi-coherent module M(Z) over the quasi-
coherent algebra fZ∗OW ' (f∗OY)(Z) on Z under the equivalence of categories from
Lemma 3.11. One can use Lemma 3.3(a) to construct the compatibility isomorphisms
related to pairs of closed subschemes Z ′ ⊂ Z ′′ ⊂ X.

In part (b), to a quasi-coherent torsion sheaf N on Y , the quasi-coherent torsion
module f∗N over the pro-quasi-coherent algebra f∗OY is assigned. To construct the
inverse functor, let M be a quasi-coherent torsion module over the quasi-coherent
algebra f∗OY on X, and let Z ⊂ X be a reasonable closed subscheme. We keep the
same notation fZ : W −→ Z as above. Then, for the corresponding quasi-coherent
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torsion sheaf N on Y, the quasi-coherent sheaf N(W ) ∈ W–qcoh corresponds to

the quasi-coherent module M(Z) over the quasi-coherent algebra fZ∗OW ' (f∗OY)(Z)

on Z. One can use Lemma 2.3(a) to construct the compatibility isomorphisms related
to pairs of reasonable closed subschemes Z ′ ⊂ Z ′′ ⊂ X. �

4. Dualizing Complexes on Ind-Noetherian Ind-Schemes

For any additive category A, we denote by C(A) the category of complexes in A and
by K(A) the homotopy category of (complexes in) A. The notation C+(A), C−(A),
and Cb(A) ⊂ C(A) stands for the categories of bounded below, bounded above, and
bounded (on both sides) complexes in A, as usual; and similarly for K+(A), K−(A),
and Kb(A) ⊂ K(A). For an abelian (or exact) category A, the full subcategory of
injective objects in A is denoted by Ainj ⊂ A.

4.1. Ind-Noetherian ind-schemes. An ind-scheme is said to be ind-Noetherian if
it can be represented by an inductive system of Noetherian schemes. It follows from
Lemma 1.2(a) that any closed subscheme of a (strict) ind-Noetherian ind-scheme is
Noetherian (since any locally closed subscheme of a Noetherian scheme is Noether-
ian). Thus any ind-Noetherian ind-scheme can be represented by an inductive system
of closed immersions of Noetherian schemes.

Let S be a Noetherian scheme and X −→ S be a morphism of ind-schemes. One
says that X is an ind-scheme of ind-finite type over S if X can be represented by an
inductive system of schemes of finite type over S. Similarly to the previous paragraph,
any closed subscheme of an ind-scheme of ind-finite type is a scheme of finite type
(over the Noetherian base scheme S). Thus any ind-scheme of ind-finite type can be
represented by an inductive system of closed immersions of schemes of finite type.

Let k be a Noetherian commutative ring. Speaking about schemes of finite type
and ind-schemes of ind-finite type over Speck, we will say simply “over k” instead of
“over Speck”, for brevity.

Examples 4.1. (1) A scheme X is said to be Artinian if it has a finite open covering
by spectra of Artinian rings; equivalently, this means that X is the spectum of an
Artinian ring. So any Artinian scheme is affine and Noetherian.

An ind-scheme is said to be ind-Artinian if it can be represented by an inductive
system of Artinian schemes. Any closed subscheme of an ind-Artinian ind-scheme is
Artinian; so an ind-Artinian ind-scheme can be represented by an inductive system
of closed immersions of Artinian schemes. Any ind-Artinian ind-scheme is ind-affine
and ind-Noetherian.

(2) Let k be a field. Notice that any Artinian scheme of finite type over k is
finite over k (in other words, any finitely generated commutative Artinian k-algebra
is finite-dimensional over k).
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The construction of Example 1.5(2) establishes an equivalence between the cate-
gory of ind-Artinian ind-schemes of ind-finite type over k and the category of cocom-
mutative coalgebras over k. To a (coassociative, counital) cocommutative coalgebra
C over k, the ind-Artinian ind-scheme of ind-finite type Spi C ∗ is assigned.

(3) The ind-schemes Spi Ẑ and SpiZp from Examples 1.4 are ind-Artinian.
Quite generally, the category of ind-Artinian ind-schemes is anti-equivalent to

the category of pro-Artinian topological commutative rings in the sense of [43, Sec-
tion 1.1]. The functor R 7−→ SpiR from Example 1.6(1) restricts to the desired
anti-equivalence. It is important here that, for any directed projective system of
(Rγ)γ∈Γ of Artinian commutative rings Rγ and surjective maps between them, the
projection map R = lim←−γ∈Γ

Rγ −→ Rδ is surjective for all δ ∈ Γ [43, Corollary A.2.1].

4.2. Definition of a dualizing complex. Notice that any closed subscheme of
a Noetherian scheme is reasonable (in the sense of Section 2.1). Hence any ind-
Noetherian ind-scheme is reasonable, and any closed subscheme of an ind-Noetherian
ind-scheme is reasonable.

Let X be a scheme. Recall the notation HomOX (−,−) for the internal Hom of
sheaves of OX-modules (see Section 2.2). The quasi-coherent internal Hom of quasi-
coherent sheaves on X is defined as follows. For any two quasi-coherent sheaves M
and N ∈ X–qcoh, the quasi-coherent sheaf HomX-qc(M,N ) ∈ X–qcoh is the object
for which a natural isomorphism of the abelian groups of morphisms

HomX–qcoh(L,HomX-qc(M,N )) ' HomX–qcoh(L ⊗OXM, N )

holds for all L ∈ X–qcoh. The quasi-coherent sheafHomX-qc(M,N ) can be obtained
by applying the coherator functor [63, Sections B.12–B.14] to the sheaf ofOX-modules
HomOX (M,N ). In particular, one has HomX-qc(M,N ) = HomOX (M,N ) when-
ever the sheaf of OX-modulesHomOX (M,N ) is quasi-coherent (e. g., this holds when
the scheme X is Noetherian and the sheaf M is coherent).

For any two complexes M• and N • of quasi-coherent sheaves on X, the complex
HomX-qc(M•,N •) of quasi-coherent sheaves on X is constructed by totalizing the
bicomplex of quasi-coherent sheaves with the components HomX-qc(Mp,N q), p,
q ∈ Z, by taking infinite products in the Grothendieck category of quasi-coherent
sheaves X–qcoh along the diagonals of the bicomplex.

Lemma 4.2. Let f : Y −→ X be a morphism of schemes, M be a quasi-coherent
sheaf on X, and N be a quasi-coherent sheaf on Y . Then there is a natural isomor-
phism of quasi-coherent sheaves on X

f∗HomY -qc(f
∗M,N ) ' HomX-qc(M, f∗N ).

Proof. Let L be an arbitrary quasi-coherent sheaf on X. Then we have

HomX(L, f∗HomY -qc(f
∗M,N )) ' HomY (f ∗L,HomY -qc(f

∗M,N ))

' HomY (f ∗L ⊗OY f ∗M, N ) ' HomY (f ∗(L ⊗OXM), N )

' HomX(L ⊗OXM, f∗N ) ' HomX(L,HomX-qc(M, f∗N )),
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where HomX(−,−) is a shorthand notation for the abelian group HomX–qcoh(−,−),
and similarly for Y . �

Lemma 4.3. Let f : Y −→ X be a morphism of schemes, M• be a complex of quasi-
coherent sheaves on X, and N • be a complex of quasi-coherent sheaves on Y . Then
there is a natural isomorphism of complexes of quasi-coherent sheaves on X

f∗HomY -qc(f
∗M•,N •) ' HomX-qc(M•, f∗N •).

Proof. Follows from Lemma 4.2 and the fact that the direct image functor f∗, being
a right adjoint, preserves infinite products of quasi-coherent sheaves. �

Lemma 4.4. (a) For any injective quasi-coherent sheaf J over a quasi-compact semi-
separated scheme X, the functor HomX-qc(−,J ) : X–qcoh −→ X–qcoh is exact.

(b) For any flat quasi-coherent sheaf F and injective quasi-coherent sheaf J over
a Noetherian scheme X, the quasi-coherent sheaf F ⊗OX J is injective.

(c) For any flat quasi-coherent sheaf F and injective quasi-coherent sheaf J over
a scheme X, the quasi-coherent sheaf HomX-qc(F ,J ) is injective.

(d) For any injective quasi-coherent sheaves J ′ and J over a semi-separated Noe-
therian scheme X, the quasi-coherent sheaf HomX-qc(J ′,J ) is flat.

Proof. This is [31, Lemma 8.7] or [12, Lemma 2.5]. �

Let X be a semi-separated Noetherian scheme. For us, a dualizing complex D• on
X is a complex of injective quasi-coherent sheaves, D• ∈ C(X–qcohinj), satisfying the
following conditions:

(i) the complex D• is homotopy equivalent to a bounded complex of injective
quasi-coherent sheaves on X;

(ii) the cohomology sheaves of the complex D• are coherent sheaves on X;
(iii) the natural morphism of complexes of quasi-coherent sheaves OX −→
HomX-qc(D•,D•) is a quasi-isomorphism (of complexes in the abelian cate-
gory X–qcoh).

This definition is equivalent to the one in [19, Section V.2], with the only difference
that a dualizing complex is viewed as a derived category object in [19], while we
presume a complex of injectives representing this derived category object to be chosen.
The complex of injectives D• does not have to be bounded, but it must be homotopy
equivalent to a bounded complex of injectives. In view of the semi-separatedness
assumption in Lemma 4.4(a), we are imposing the semi-separatedness assumption on
the scheme X in the definition above in order to be able to use the quasi-coherent
internal Hom in the formulation of condition (iii). In particular, being a dualizing
complex is a local property of a complex of quasi-coherent sheaves.

Lemma 4.5. Let i : Z −→ X be a closed immersion of semi-separated Noether-
ian schemes and D• ∈ C(X–qcohinj) be a dualizing complex on X. Then i!D• ∈
C(Z–qcohinj) is a dualizing complex on Z.
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Proof. First of all, the functor i! : X–qcoh −→ Z–qcoh is right adjoint to an exact
functor i∗; so i! takes injectives to injectives. The rest is [19, Proposition V.2.4]. (Cf.
Lemmas 4.25 and 4.11 below.) �

An ind-scheme is said to be ind-semi-separated if it can be represented by an in-
ductive system of semi-separated schemes. It follows from Lemma 1.2(a) that any
closed subscheme of an ind-semi-separated ind-scheme is ind-semi-separated (since
any locally closed subscheme of a semi-separated scheme is semi-separated). Thus
any ind-semi-separated ind-scheme can be represented by an inductive system of
closed immersions of semi-separated schemes. Moreover, any ind-semi-separated ind-
Noetherian ind-scheme can be represented by an inductive system of closed immer-
sions of semi-separated Noetherian schemes.

Similarly, an ind-scheme is said to be ind-separated if it can be represented by an
inductive system of separated schemes. Any closed subscheme of an ind-separated
ind-scheme is ind-separated.

Let X be an ind-semi-separated ind-Noetherian ind-scheme. A dualizing complex
D• on X is a complex of quasi-coherent torsion sheaves, D• ∈ C(X–tors), satisfying
the following condition:

(iv) for every closed subscheme Z ⊂ X with the closed immersion morphism
i : Z −→ X, the complex i!D• ∈ C(Z–qcoh) is a dualizing complex on Z.

Here the functor i! : X–tors −→ Z–qcoh is applied to the complex D• ∈ C(X–tors)
termwise (no derived functor is presumed in our notation). In view of condition (i)
for i!D• ∈ C(Z–qcoh) and Proposition 2.17(b), it follows from condition (iv) that
D• ∈ C(X–tors) is actually a complex of injective quasi-coherent torsion sheaves; so
D• ∈ C(X–torsinj).

Let X = “lim−→”
γ∈Γ

Xγ be a representation of X by an inductive system of closed

immersions of semi-separated Noetherian schemes. Then, in view of Lemma 4.5, it
suffices to check condition (iv) for the closed subschemes belonging to the inductive
system (Xγ)γ∈Γ; so one can assume Z = Xγ for some γ ∈ Γ.

Remark 4.6. A more common point of view is to consider a dualizing complex on
a scheme X as an object of the derived category D(X–qcoh), or more specifically, of
the bounded derived category Db(X–qcoh). A similar point of view on dualizing com-
plexes on ind-schemes is also possible, but it prescribes viewing a dualizing complex
D• on X as an object of the coderived category Dco(X–tors), as defined in Section 4.4
below. Indeed, the homotopy category of complexes of injective quasi-coherent tor-
sion sheaves K(X–torsinj) is equivalent to the coderived category by Corollary 4.18.

For schemes, one does not feel the difference between the derived and the coderived
category in this context, because there is no such difference for complexes bounded
below; see the discussion in Remark 5.3(1). The dualizing complex on an ind-scheme
is often bounded above (see Remarks 5.3(3–5)), but it is usually not bounded below
(unless the whole ind-scheme is finite-dimensional).

In fact, a dualizing complex D• on an ind-scheme X can well be an acyclic complex,
and in some very simple examples it is; see Section 11.1(7).
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Example 4.7. Let X = “lim−→”(X0 → X1 → X2 → · · · ) be an ind-semi-separated ind-
Noetherian ℵ0-ind-scheme represented by an inductive system of closed immersions
of (semi-separated Noetherian) schemes indexed by the poset of nonnegative integers.
Let in : Xn −→ Xn+1 denote the closed immersion morphisms in the inductive system.
Suppose that we are given a dualizing complex D•n on the scheme Xn for every n ≥ 0
together with homotopy equivalencesD•n −→ i!nD•n+1 of complexes of (injective) quasi-
coherent sheaves on Xn. Then there are the related morphisms in∗D•n −→ D•n+1 of
complexes of quasi-coherent sheaves on Xn+1.

Let kn : Xn −→ X be the natural closed immersions. Consider the inductive system
k0∗D•0 −→ k1∗D•1 −→ · · · of complexes of quasi-coherent torsion sheaves on the ind-
scheme X, and put D• = lim−→n≥0

kn∗D•n ∈ C(X–tors). Then D• is a dualizing complex

on the ind-scheme X.
Indeed, for everym ≥ 0 we have k!

mD• = lim−→n≥0
k!
mkn∗D•n = lim−→n≥m i

!
m · · · i!n−1D•n ∈

C(Xm–qcoh). Since the class of all injective quasi-coherent sheaves on Xm is closed
under direct limits (the scheme Xm being Noetherian), it follows that k!

mD• is a
complex of injective quasi-coherent sheaves on Xm. Now we claim that the natural
morphism D•m −→ k!

mD• is a homotopy equivalence of complexes of (injective) quasi-
coherent sheaves on Xm. As a complex of injective quasi-coherent sheaves homotopy
equivalent to a dualizing complex is also a dualizing complex, this suffices to prove
the desired assertion.

The morphisms of complexes D•m −→ i!m · · · i!n−1D•n are homotopy equivalences
by assumption. So it remains to observe that, for any sequence J •0 −→ J •1 −→
J •2 −→ · · · of homotopy equivalences of complexes of injective quasi-coherent sheaves
on a Noetherian scheme X, the natural morphism J •0 −→ lim−→n≥0

J •n is a homo-

topy equivalence. Indeed, the telescope short exact sequence 0 −→
⊕

n≥0 J •n −→⊕
n≥0 J •n −→ lim−→n≥0

J •n −→ 0 is a short exact sequence of complexes of injectives,

so it is termwise split. Hence lim−→n≥0
J •n is the homotopy colimit of the sequence

J •0 −→ J •1 −→ J •2 −→ · · · in the homotopy category K(X–qcoh). It remains to
apply [34, Lemma 1.6.6].

Proposition 6.28 or Lemma 6.29 below, combined with Lemma 4.12, show that
this construction of a dualizing complex D• on X does not depend on the arbitrary
choices of the morphisms of complexes in∗D•n −→ D•n+1 in the given homotopy classes
of such morphisms.

Examples 4.8. (1) A morphism of ind-schemes k : Z −→ X is said to be an ind-closed
immersion if, for every closed subscheme Z ⊂ Z, the composition Z −→ Z −→ X
is a closed immersion. Let k : Z −→ X be an ind-closed immersion of reasonable
ind-schemes, and let M be a quasi-coherent torsion sheaf on X. For every reasonable
closed subscheme Z ⊂ Z, put N(Z) = k!

ZM , where kZ : Z −→ X. Then the collection
of quasi-coherent sheaves N(Z) ∈ Z–qcoh defines a quasi-coherent torsion sheaf N
on Z. Put k!M = N ; this rule defines a functor k! : X–tors −→ Z–tors. This
construction generalizes the construction of the functor i! for a closed immersion of
ind-schemes i : Z −→ X in Section 2.8.
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(2) Let X be an ind-semi-separated ind-Noetherian ind-scheme, and let k : Z −→ X
be an ind-closed immersion of schemes. Let D• be a dualizing complex on X. Then
it is clear from the definitions and Lemma 4.5 that k!D• is a dualizing complex on Z.

(3) In particular, let X be a semi-separated Noetherian scheme, and let X be
an ind-scheme endowed with an ind-closed immersion of ind-schemes k : X −→ X.
This means that X = “lim−→”

γ∈Γ
Xγ, where (Xγ)γ∈Γ is an inductive system of closed

subschemes in X. Let D• be a dualizing complex on X. Denoting by kγ : Xγ −→ X
the composition Xγ −→ X −→ X, put D•γ = k!

γD• ∈ C(Xγ–qcohinj). Then, by
Lemma 4.5, D•γ is a dualizing complex on Xγ. Denoting by iγδ the closed immersions

Xγ −→ Xδ, we have D•γ ' i!γδD•δ for all γ < δ ∈ Γ. So the collection of complexes
of injective quasi-coherent sheaves D•γ on Xγ defines an complex of injective quasi-
coherent torsion sheaves D• on X (by Proposition 2.17(b)). By the definition, D• is
a dualizing complex on X.

4.3. Derived categories of flat sheaves and flat pro-sheaves. We refer to [32],
[8, Section 10], or [42, Section A.7] for the definition of the derived category D(E) of
an exact category E. The bounded below, bounded above, and bounded (on both
sides) versions of the derived category are denoted, as usually, by D+(E), D−(E),
and Db(E) ⊂ D(E); these are full triangulated subcategories of the triangulated cat-
egory D(E).

In particular, let X be a scheme. Then the full subcategory X–flat ⊂ X–qcoh
of flat quasi-coherent sheaves inherits an exact category structure from the ambient
abelian category of quasi-coherent sheaves on X. So one can consider the derived
category D(X–flat) alongside with the derived category D(X–qcoh).

A complex of flat quasi-coherent sheaves which vanishes as an object of D(X–qcoh)
need not vanish as an object of D(X–flat), generally speaking. Rather, a complex
F• of flat quasi-coherent sheaves vanishes as an object of D(X–flat) (“is acyclic with
respect to the exact category X–flat ”) if and only if F• is acyclic as a complex of
quasi-coherent sheaves on X and all the quasi-coherent sheaves of cocycles of the
complex F• are flat.

Let X be a quasi-compact semi-separated scheme. A quasi-coherent sheaf P on
X is said to be cotorsion if Ext1

X–qcoh(F ,P) = 0 for all flat quasi-coherent sheaves F
on X.

Lemma 4.9. (a) For any quasi-coherent sheaf M and any injective quasi-coherent
sheaf J on a quasi-compact semi-separated scheme X, the quasi-coherent sheaf
HomX-qc(M,J ) is cotorsion.

(b) For any flat quasi-coherent sheaf F and any cotorsion quasi-coherent
sheaf P on a quasi-compact semi-separated scheme X, the quasi-coherent sheaf
HomX-qc(F ,P) is cotorsion.

(c) For any family (Pξ)ξ∈Ξ of flat cotorsion quasi-coherent sheaves on a semi-
separated Noetherian scheme X, the quasi-coherent sheaf

∏
ξ∈ΞPξ on X is flat co-

torsion. (Here the product is taken in the Grothendieck category X–qcoh.)
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Proof. Parts (a–b): the key fact is that there are enough flat quasi-coherent sheaves
on any quasi-compact semi-separated scheme, i. e., any quasi-coherent sheaf is a
quotient of a flat one (see [30, Section 2.4] or [12, Lemma A.1]). Consequently, a
quasi-coherent sheaf Q on X is cotorsion if and only if, for every short exact sequence
of flat quasi-coherent sheaves 0 −→ F ′ −→ F −→ F ′′ −→ 0 on X, the short sequence
of abelian groups 0 −→ HomX(F ′′,Q) −→ HomX(F ,Q) −→ HomX(F ′,Q) −→ 0 is
exact. Here HomX is a shorthand for HomX–qcoh.

With this criterion, the assertions of both (a) and (b) follow straightforwardly from
the universal property definition of HomX-qc.

Part (c): let X =
⋃
α Uα be a finite affine open covering of a quasi-compact semi-

separated scheme X. Denote by jα : Uα −→ X the open immersion morphisms.
According to [44, Lemma 4.1.12], the flat cotorsion quasi-coherent sheaves on X are
precisely the direct summands of finite direct sums of the form

⊕
α jα∗Qα, where

Qα are flat cotorsion quasi-coherent sheaves on Uα. Notice that the direct image
functors jα∗ (being right adjoint to the inverse image functors j∗α) preserve infinite
products of quasi-coherent sheaves.

This reduces the question to the particular case of an affine scheme X. It remains
to recall that, over any (commutative) ring, the class of cotorsion modules is closed
under infinite products; and over a Noetherian (or coherent) ring, the class of flat
modules is closed under infinite products as well. �

Lemma 4.10. For any complexes of injective quasi-coherent sheaves ′J • and J • on
a semi-separated Noetherian scheme X, the complex HomX-qc(

′J •,J •) is a complex
of flat cotorsion quasi-coherent sheaves.

Proof. The assertion follows from Lemma 4.4(d) combined with Lemma 4.9(a,c).
Alternatively, one can observe that both the quasi-coherent sheaves ′K =

⊕
p∈Z

′J p

and K =
∏

q∈Z J q are injective and all the terms of the complex HomX-qc(
′J •,J •)

are direct summands of the quasi-coherent sheaf HomX-qc(
′K,K). Then it remains

to apply Lemma 4.4(d) and Lemma 4.9(a). �

Lemma 4.11. For any dualizing complex D• on a semi-separated Noetherian scheme
X, the natural morphism OX −→ HomX-qc(D•,D•) from condition (iii) in Sec-
tion 4.2 is a quasi-isomorphism of complexes in the exact category X–flat.

Proof. First of all, HomX-qc(D•,D•) is a complex of flat quasi-coherent sheaves by
Lemma 4.10. Now the point is that, by the definition, any dualizing complex D• on
X is homotopy equivalent to a bounded dualizing complex ′D•. Hence the complex
HomX-qc(D•,D•) is homotopy equivalent to the complex HomX-qc(

′D•, ′D•), which
is a bounded complex of flat quasi-coherent sheaves. Finally, a morphism of bounded
(above) complexes of flat quasi-coherent sheaves is a quasi-isomorphism of complexes
in X–flat if and only if it is a quasi-isomorphism of complexes in X–qcoh (because any
bounded above complex of flat quasi-coherent sheaves that is acyclic as a complex of
quasi-coherent sheaves has flat sheaves of cocycles). �

Lemma 4.12. For any dualizing complex D• on a semi-separated Noetherian scheme
X, one has HomK(X–qcohinj)(D

•,D•[n]) = 0 for all n < 0.
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Proof. By the adjunction property defining the quasi-coherent internal Hom, we have

HomK(X–qcohinj)(D
•,D•[n]) = HomK(X–flat)(OX ,HomX-qc(D•,D•)[n]).

Without loss of generality, we can assume the complex D• to be a bounded com-
plex of injective quasi-coherent sheaves. Set P• = HomX-qc(D•,D•); then P• is a
bounded complex as well. All the quasi-coherent sheaves Pn on X are cotorsion
by Lemma 4.9(a). Since there are enough flat quasi-coherent sheaves on a quasi-
compact semi-separated scheme X, one has ExtmX–qcoh(F ,P) = 0 for all F ∈ X–flat,
all cotorsion quasi-coherent sheaves P on X, and all m > 0; in particular, in the
situation at hand ExtmX–qcoh(OX ,Pn) = 0 for all m > 0 and n < 0. As the complex
P• in X–qcoh also has vanishing cohomology sheaves in the negative cohomological
degrees, it follows that HomK(X–flat)(OX ,HomX-qc(D•,D•)[n]) = 0 for n < 0. �

Let X = “lim−→”
γ∈Γ

Xγ be an ind-scheme represented by an inductive system of closed

immersions of schemes. The construction of Proposition 3.5 defines an exact category
structure on the category of flat pro-quasi-coherent pro-sheaves X–flat. Hence the
related derived category D(X–flat).

Lemma 4.13. A complex of flat pro-quasi-coherent pro-sheaves F• is acyclic (as a
complex in X–flat) if and only if, for every γ ∈ Γ, the complex of flat quasi-coherent
sheaves F•(Xγ) is acyclic (as a complex in Xγ–flat).

Proof. The proof is straightforward. �

4.4. Coderived category of torsion sheaves. Let E be an exact category. A com-
plex in E is said to be absolutely acyclic if it belongs to the minimal thick subcategory
of K(E) containing the totalizations of short exact sequences of complexes in E. Here
a short sequence of complexes in E is said to be exact if it is termwise exact (i. e.,
exact in every degree), and “totalization” of a short sequence of complexes means
taking the total complex of a bicomplex with three rows. The triangulated quotient
category of K(E) by the thick subcategory of absolutely acyclic complexes is called
the absolute derived category of an exact category E and denoted by Dabs(E).

Let E be an exact category in which infinite coproducts exist and the class of all
short exact sequences is closed under coproducts (in this case, we will say that E has
exact coproducts). Then a complex in E is said to be coacyclic if it belongs to the
minimal triangulated subcategory of K(E) containing the totalizations of short exact
sequences in C(E) and closed under coproducts. The coderived category Dco(E) is
defined as the triangulated quotient category of the homotopy category K(E) by the
thick subcategory of coacyclic complexes.

The reader is referred to [40, Section 2.1], [41, Sections 3–4], [12, Section 1.3], [44,
Appendix A], [47, Section 2] for a discussion of these definitions.

An exact category E is said to have homological dimension ≤ d (where d ≥ −1 is
an integer) if Extd+1

E (E,F ) = 0 for all E, F ∈ E.

Lemma 4.14. (a) In any exact category E, any absolutely acyclic complex is acyclic;
so there is a natural triangulated Verdier quotient functor Dabs(E) −→ D(E).
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(b) In any exact category E with exact coproducts, any absolutely acyclic complex
is coacyclic, and any coacyclic complex is acyclic; so there are natural triangulated
Verdier quotient functors Dabs(E) −→ Dco(E) −→ D(E).

(c) In an exact category E of finite homological dimension, any acyclic complex is
absolutely acyclic.

Proof. Parts (a–b) are straightforward; part (c) is [40, Remark 2.1]. �

Proposition 4.15. (a) For any exact category E with exact coproducts, the compo-
sition K(Einj) −→ K(E) −→ Dco(E) of the inclusion functor K(Einj) −→ E(E) (induced
by the inclusion Einj −→ E) with the Verdier quotient functor K(E) −→ Dco(E) is a
fully faithful triangulated functor K(Einj) −→ Dco(E).

(b) Let E be an exact category with infinite coproducts and enough injective objects.
Assume that the class of all injectives Einj ⊂ E is closed under coproducts in E.
Then the triangulated functor K(Einj) −→ Dco(E) from part (a) is an equivalence of
triangulated categories. Moreover, for any complex E• in E there exists a complex J•

in Einj together with a morphism of complexes E• −→ J• whose cone is a coacyclic
complex in E.

Proof. It should be noticed that in any exact category with infinite coproducts and
enough injective objects the infinite coproduct functors are exact. Part (a) is [41,
Section 3.5] or [44, Lemma A.1.3(a)]. Part (b) is [41, Section 3.7]; for a far-reaching
generalization, see [47, Proposition 2.1]. �

A Grothendieck abelian category is said to be locally Noetherian if it has a set
of generators consisting of Noetherian objects. Equivalently, a Grothendieck abelian
category A is locally Noetherian if and only if every object of A is the union of its
Noetherian subobjects.

Lemma 4.16. In any locally Noetherian Grothendieck category, the class of all in-
jective objects is closed under coproducts.

Proof. Follows from Lemma 2.15. �

Proposition 4.17. For any ind-Noetherian ind-scheme X, the category X–tors of
quasi-coherent torsion sheaves on X is a locally Noetherian Grothendieck category.
The direct images of coherent sheaves from closed subschemes of X are the Noetherian
objects of X–tors.

Proof. The category X–tors is Grothendieck by Theorem 2.4, and it has a set of Noe-
therian generators by Lemma 2.16 (because the category of quasi-coherent sheaves on
a Noetherian scheme is locally Noetherian and the coherent sheaves are its Noetherian
objects). The description of the Noetherian objects in X–tors easily follows. �

Corollary 4.18. For any ind-Noetherian ind-scheme X, the coderived category of
quasi-coherent torsion sheaves is naturally equivalent to the homotopy category of
injective quasi-coherent torsion sheaves, K(X–torsinj) ' Dco(X–tors).

Proof. Combine Proposition 4.17, Lemma 4.16, and Proposition 4.15(b). �
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Remark 4.19. Let X be an ind-Noetherian ind-scheme. One can say that a quasi-
coherent torsion sheaf M on X is coherent if there exists a closed subscheme Z ⊂ X
with the closed immersion morphism i : Z −→ X and a coherent sheaf M on Z such
that M ' i∗M. Then the full subcategory of coherent torsion sheaves X-tcoh ⊂
X–tors is an abelian Serre subcategory; by Proposition 4.17, it is the full subcategory
of Noetherian objects in the locally Noetherian category X–tors. It follows that
the coderived category Dco(X–tors) is compactly generated and the bounded derived
category Db(X-tcoh) is the full subcategory of compact objects in Dco(X–tors).

Lemma 4.20. Let A be a Grothendieck abelian category and S ⊂ A be a class of
objects, closed under quotients and containing a set of generators of A. Let J• ∈
K(Ainj) be a complex of injective objects in A such that for every object S ∈ S one has
HomK(A)(S, J

•) = 0. Then the complex J• is contractible.

Proof. Using the assumption that S contains a set of generators for A, one proves that
the complex J• is acyclic in A. Since S is also closed under quotients, Lemma 2.15
shows that any object K ∈ A for which Ext1

A(S,K) = 0 for all S ∈ S is injective. From
this observation one deduces injectivity of the cocycle objects of the complex J•. �

Lemma 4.21. Let X = “lim−→”
γ∈Γ

Xγ be a reasonable ind-scheme represented by

an inductive system of closed immersions of reasonable closed subschemes, and
let iγ : Xγ −→ X be the natural closed immersions. Let J • ∈ K(X–torsinj) be a
complex of injective quasi-coherent torsion sheaves on X. Assume that the complex
of injective quasi-coherent sheaves i!γJ

• on Xγ is contractible for every γ ∈ Γ. Then
the complex of injective quasi-coherent torsion sheaves J • on X is contractible as
well.

Proof. For every complex of quasi-coherent sheaves M• on Xγ, γ ∈ Γ, we have
HomK(X–tors)(iγ∗M•,J •) ' HomK(Xγ–qcoh)(M•, i!γJ

•) = 0. In view of Lemmas 4.20
and 2.16, it follows that the complex J • is contractible. �

4.5. The triangulated equivalence. To begin with, we recall the triangulated
equivalence for a semi-separated Noetherian scheme with a dualizing complex.

Theorem 4.22. Let X be a semi-separated Noetherian scheme with a dualiz-
ing complex D•. Then there is a natural equivalence of triangulated categories
Dco(X–qcoh) ' D(X–flat), provided by mutually inverse triangulated functors
HomX-qc(D•,−) : K(X–qcohinj) −→ D(X–flat) and D• ⊗OX − : D(X–flat) −→
K(X–qcohinj).

Proof. Notice first of all that any Noetherian scheme with a dualizing complex has
finite Krull dimension [19, Corollary V.7.2]; hence the exact category X–flat has finite
homological dimension [57, Corollaire II.3.2.7], [44, Lemma 5.4.1] (for a direct argu-
ment showing that existence of a dualizing complex implies finite projective dimension
of flat modules, see [9, Proposition 1.5], [44, Corollary B.4.2], or [47, Proposition 4.3]).
By Lemma 4.14, it follows that D(X–flat) = Dco(X–flat) = Dabs(X–flat).
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Furthermore, the equivalence Dco(X–qcoh) ' K(X–qcohinj) is a particular case of
Corollary 4.18.

The assertion of the theorem is a result of Murfet [31, Theorem 8.4 and Propo-
sition 8.9]; for a different argument, which is much closer to our exposition below,
see [12, Theorem 2.5] (which is stated and proved in the more complicated context
of matrix factorizations). Cf. [44, Theorem 5.7.1] and [47, Theorem 4.5].

The dualizing complex D• on X is assumed to be a bounded complex of injectives
in the above references; here we assume it to be homotopy equivalent to bounded,
which is essentially the same. For a generalization to Noetherian schemes of infinite
Krull dimension with pointwise dualizing complexes of infinite injective dimension,
see [36, Corollary 3.10]. �

The following theorem is the main result of Section 4.

Theorem 4.23. Let X be an ind-semi-separated ind-Noetherian ind-scheme with
a dualizing complex D•. Then there is a natural equivalence of triangulated
categories Dco(X–tors) ' D(X–flat), provided by mutually inverse triangulated func-
tors HomX-qc(D•,−) : K(X–torsinj) −→ D(X–flat) and D• ⊗X − : D(X–flat) −→
K(X–torsinj).

The notation HomX-qc(−,−) will be explained below, and the proof of Theorem 4.23
will be given below in this Section 4.5.

Lemma 4.24. Let f : Y −→ X be a flat morphism of schemes and Z ⊂ X be a
reasonable closed subscheme with the closed immersion i : Z −→ X. Consider the
pullback diagram

Z ×X Y
k
//

g

��

Y

f

��

Z
i

// X

Put W = Z ×X Y . Then there is a natural isomorphism g∗i! ' k!f ∗ of functors
X–qcoh −→ W–qcoh.

Proof. The assertion is local in X and reduces to the case of affine schemes, for which
it means the following. Let R −→ S be a homomorphism of commutative rings
such that S is a flat R-module, and let R −→ T be a surjective homomorphism of
commutative rings with a finitely generated kernel ideal. Let M be an R-module.
Then the natural map

(S ⊗R T )⊗T HomR(T,M) ' S ⊗R HomR(T,M)

−−→ HomR(T, S ⊗RM) ' HomS(S ⊗R T, S ⊗RM)

is an isomorphism of (S ⊗R T )-modules. �

Lemma 4.25. Let i : Z −→ X be a closed immersion of schemes, and let M, K be
quasi-coherent sheaves on X. Then there is a natural morphism

i∗HomX-qc(M,K) −−→ HomZ-qc(i
!M, i!K)
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of quasi-coherent sheaves on Z. This morphism is an isomorphism whenever the
scheme X is (quasi-compact and) semi-separated, i(Z) is a reasonable closed sub-
scheme in X, and K is an injective quasi-coherent sheaf on X.

Proof. To prove the first assertion, it suffices to construct a natural morphism
HomX-qc(M,K) −→ i∗HomZ-qc(i

!M, i!K) of quasi-coherent sheaves on X. Let L
be an arbitrary quasi-coherent sheaf on X. Then morphisms L −→ HomX-qc(M,K)
correspond bijectively to morphisms L ⊗OX M −→ K, while morphisms L −→
i∗HomZ-qc(i

!M, i!K) correspond bijectively to morphisms i∗L ⊗OZ i!M −→ i!K.
Applying i! to a morphism L ⊗OX M −→ K and precomposing with the natural
morphism from Lemma 3.6, one obtains a morphism i∗L ⊗OZ i!M−→ i!K.

For the second assertion, notice that any injective quasi-coherent sheaf on a quasi-
compact scheme X is a direct summand of a finite direct direct sum of direct images
of injective quasi-coherent sheaves from affine open subschemes of X (as there are
enough injective objects of this form in X–qcoh). Let U ⊂ X be an affine open
subscheme and j : U −→ X be the open immersion morphism. We can assume that
K = j∗J , where J is an injective quasi-coherent sheaf on U .

Now

i∗HomX-qc(M, j∗J ) ' i∗j∗HomU -qc(j
∗M,J ) ' g∗k

∗HomU -qc(j
∗M,J ),

where k : W = Z ×X U −→ U , g : W −→ Z, the first isomorphism holds by
Lemma 4.2, and the second one by Lemma 3.3(a). (The assumption that X is
semi-separated is used here, as we need j to be an affine morphism.)

On the other hand, we have i!j∗J ' g∗k
!J by Lemma 2.3(a) and g∗i!M' k!j∗M

by Lemma 4.24. Hence

HomZ-qc(i
!M, i!j∗J ) ' HomZ-qc(i

!M, g∗k
!J )

' g∗HomW -qc(g
∗i!M, k!J ) ' g∗HomW -qc(k

!j∗M, k!J ).

This reduces the second assertion of the lemma to the particular case of an affine
scheme U with a reasonable closed subscheme k(W ) ⊂ U , with the quasi-coherent
sheaf j∗M and the injective quasi-coherent sheaf J on U . In the affine case, the
assertion means the following. Let R −→ S be a surjective ring homomorphism with
a finitely generated kernel ideal, let M be an R-module, and let J be an injective
R-module. Then the natural morphism of S-modules

S⊗RHomR(M,J) −−→ HomR(HomR(S,M), J) ' HomS(HomR(S,M),HomR(S, J))

is an isomorphism. �

Lemma 4.26. Let i : Z −→ X be a closed immersion of schemes, and let (Pξ)ξ∈Ξ be
a family of quasi-coherent sheaves on X. Then there is a natural morphism

i∗
∏

ξ∈Ξ
Pξ −−→

∏
ξ∈Ξ

i∗Pξ

of quasi-coherent sheaves on Z. This morphism is an isomorphism whenever the
scheme X is (quasi-compact and) semi-separated, i(Z) is a reasonable closed sub-
scheme in X, and Pξ are flat cotorsion quasi-coherent sheaves on X.
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Proof. The first assertion holds for any functor between categories with products
(in the role of i∗). The result of [44, Lemma 4.1.12], as restated in the proof of
Lemma 4.9(c), reduces the second assertion to the particular case when Pξ = j∗Qξ
for every ξ ∈ Ξ, where j : U −→ X is the immersion of an affine open subscheme and
Qξ are (flat cotorsion) quasi-coherent sheaves on U .

Put W = Z ×X U , and denote by k : W −→ U and g : W −→ Z the natural
morphisms. In view of Lemma 3.3, we have

i∗
∏

ξ∈Ξ
j∗Qξ ' i∗j∗

∏
ξ∈Ξ
Qξ ' g∗k

∗
∏

ξ∈Ξ
Qξ,

while ∏
ξ∈Ξ

i∗j∗Qξ '
∏

ξ∈Ξ
g∗k
∗Qξ ' g∗

∏
Ξ∈Ξ

k∗Qξ.
Now we have reduced the second assertion of the lemma to the particular case of

an affine scheme U with a reasonable closed subscheme k(W ) ⊂ U and the family
of (flat cotorsion) quasi-coherent sheaves Qξ on U . In the affine case, the assertion
means the following. Let R −→ S be a surjective ring homomorphism with a finitely
generated kernel ideal, and let (Qξ)ξ∈Ξ be a family of (flat cotorsion) R-modules.
Then the natural morphism of S-modules

S ⊗R
∏

ξ∈Ξ
Qξ −−→

∏
ξ∈Ξ

S ⊗R Qξ

is an isomorphism. The assumption that the R-modules Qξ are flat cotorsion is not
needed here; it was only used in order to reduce the question to the affine case. �

Lemma 4.27. Let i : Z −→ X be a closed immersion of schemes, and let M•,
K• ∈ C(X–qcoh) be complexes of quasi-coherent sheaves on X. Then there is a
natural morphism

i∗HomX-qc(M•,K•) −−→ HomZ-qc(i
!M•, i!K•)

of complexes of quasi-coherent sheaves on Z. This morphism is an isomorphism
whenever the scheme X is (quasi-compact and) semi-separated, i(Z) is a reasonable
closed subscheme in X, and K• is a complex of injective quasi-coherent sheaves on X.

Proof. For every n ∈ Z, the degree n component of the desired morphism of complexes
of quasi-coherent sheaves on Z is the composition

(3) i∗HomX-qc(M•,K•)n = i∗
∏

q−p=n
HomX-qc(Mp,Kq)

−−→
∏

q−p=n
i∗HomX-qc(Mp,Kq)

−−→
∏

q−p=n
HomZ-qc(i

!Mp, i!Kq) = HomZ-qc(i
!M•, i!K•)n

of the morphisms induced by the natural morphisms from Lemmas 4.26 and 4.25.
Assuming that X is semi-separated, i(Z) is reasonable in X, and K• is a com-

plex of injectives, the morphisms i∗HomX-qc(Mp,Kq) −→ HomZ-qc(i
!Mp, i!Kq)

are isomorphisms by Lemma 4.25. Assuming additionally that X is a Noether-
ian scheme and M• is also a complex of injectives, the quasi-coherent sheaves
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HomX-qc(Mp,Kq) are flat cotorsion by Lemmas 4.4(d) and 4.9(a). Hence the map
i∗
∏

q−p=nHomX-qc(Mp,Kq) −→
∏

q−p=n i
∗HomX-qc(Mp,Kq) is an isomorphism by

Lemma 4.26, and we are done.
In the general case of the assumptions of the lemma, put N =

⊕
p∈ZMp and

L =
∏

q∈ZKq. Then N is a quasi-coherent sheaf and L is an injective quasi-coherent

sheaf on X. The functor i! : X–qcoh −→ Z–qcoh preserves both the infinite products
(as a right adjoint functor) and coproducts (in fact, it even preserves direct limits,
since Z is a reasonable closed subscheme in X). By Lemma 4.25, the natural mor-
phism i∗HomX-qc(N ,L) −→ HomZ-qc(i

!N , i!L) is an isomorphism of quasi-coherent
sheaves on Z. In every degree n ∈ Z, the morphism (3) is a direct summand of this
isomorphism, hence also an isomorphism.

Yet another approach is to notice that the proof of Lemma 4.26 is actually appli-
cable to any family of quasi-coherent sheaves Pξ each of which is a direct summand
of a finite direct sum of direct images of quasi-coherent sheaves from affine open sub-
schemes in a fixed finite affine open covering X =

⋃
α Uα. Then it remains to observe

that, for any quasi-coherent sheafM and any injective quasi-coherent sheaf K on X,
the quasi-coherent sheaf HomX-qc(M,K) is a direct summand of such a direct sum
of direct images (since the quasi-coherent sheaf K is). �

Let X be a reasonable ind-semi-separated ind-scheme. Let E • ∈ C(X–tors) be a
complex of quasi-coherent torsion sheaves on X, and let J • ∈ C(X–torsinj) be a
complex of injective quasi-coherent torsion sheaves on X. Then the complex of pro-
quasi-coherent pro-sheaves HomX-qc(E •,J •) ∈ C(X–pro) is constructed as follows.

For every reasonable closed subscheme Z ⊂ X, put HomX-qc(E •,J •)(Z) =
HomZ-qc(i

!E •, i!J •) = HomZ-qc(E •(Z),J
•
(Z)), where i : Z −→ X is the closed

immersion morphism. According to Lemma 4.27, for every pair of reasonable
closed subschemes Y , Z ⊂ X such that Z ⊂ Y , we have HomX-qc(E •,J •)(Z) '
i∗ZY HomX-qc(E •,J •)(Y ), as required in the definition of a pro-quasi-coherent pro-
sheaf (where iZY : Z −→ Y is the closed immersion). This explains the meaning of
the notation in Theorem 4.23.

Proof of Theorem 4.23. The equivalence Dco(X–tors) ' K(X–torsinj) is provided by
Corollary 4.18.

The tensor product functor ⊗X : X–flat × X–tors −→ X–tors was constructed in
Sections 3.2 and 3.4. Here we switch the two arguments and write ⊗X : X–tors ×
X–flat −→ X–tors. Given a complex of quasi-coherent torsion sheaves E • ∈ C(X–tors)
and a complex of flat pro-quasi-coherent pro-sheaves F• ∈ C(X–flat), the complex
of quasi-coherent torsion sheaves E • ⊗X F• ∈ C(X–tors) is constructed by taking
coproducts along the diagonals of the bicomplex of quasi-coherent torsion sheaves
E p ⊗X Fq, p, q ∈ Z.

This construction defines a functor E •⊗X− : C(X–flat) −→ C(X–tors), which obvi-
ously descends to a triangulated functor between the homotopy categories E •⊗X− :
K(X–flat) −→ K(X–tors). By Proposition 3.7, for any complex F• ∈ C(X–flat) and
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any closed subscheme Z ⊂ X with the closed immersion morphism i : Z −→ X, we
have i!(E • ⊗X F•) ' i!E • ⊗OZ i∗F•.

Now let us assume that E • is a complex of injective quasi-coherent torsion sheaves,
E • ∈ C(X–torsinj). By Lemma 4.4(b), the complex i!E • ⊗OZ i∗F• is a complex of
injective quasi-coherent sheaves on Z (recall that injectivity of quasi-coherent sheaves
on a Noetherian scheme is preserved by coproducts). By Proposition 2.17(b), it
follows that E • ⊗X F• is a complex of injective quasi-coherent torsion sheaves on X.
We have constructed a triangulated functor

(4) E • ⊗X − : K(X–flat) −−→ K(X–torsinj).

Let us check that the latter functor induces a well-defined triangulated functor

(5) E • ⊗X − : D(X–flat) −−→ K(X–torsinj).

For this purpose, we need to show that the complex E • ⊗X F• ∈ K(X–torsinj) is
contractible whenever a complex F• ∈ K(X–flat) is acyclic with respect to the exact
category X–flat. By Lemma 4.21, it suffices to check that the complex i!(E •⊗XF

•) '
i!E • ⊗OZ i∗F• ∈ K(Z–qcohinj) is contractible. Here i!E • is a complex of injective
quasi-coherent sheaves on Z and i∗F• is an acyclic complex in the exact category
Z–flat.

The latter assertion is essentially a part of Theorem 4.22. One can say that any
acyclic complex in Z–flat is coacyclic, and it is easy to see that the tensor product of
a coacyclic complex in Z–flat with any complex in Z–qcoh is coacyclic; a coacyclic
complex of injectives is contractible. Alternatively, one can assume that i!E • is
homotopy equivalent to a bounded complex in Z–qcohinj; on any Noetherian scheme
Z, it is clear that the tensor product of an acyclic complex in Z–flat with a bounded
complex of injectives is contractible. For quite general results in this direction, see
Lemmas 5.1(d) and 5.2(c) below.

On the other hand, for any complex E • ∈ C(X–tors), the construction preceding
this proof provides a functor HomX-qc(E •,−) : C(X–torsinj) −→ C(X–pro), which
obviously descends to a triangulated functor between the homotopy categories
HomX-qc(E •,−) : K(X–torsinj) −→ K(X–pro). By construction, for any complex
J • ∈ C(X–torsinj) and any closed subscheme Z ⊂ X with the closed immersion
morphism i : Z −→ X, we have i∗HomX-qc(E •,J •) = HomZ-qc(i

!E •, i!J •).
Once again, assume that E • is a complex of injective quasi-coherent torsion sheaves

on X. Then, by Lemma 4.10, the complex HomZ-qc(i
!E •, i!J •) is a complex of flat

quasi-coherent sheaves on Z. Hence HomX-qc(E •,J •) is a complex of flat pro-quasi-
coherent pro-sheaves on X. We have constructed a triangulated functor

(6) HomX-qc(E
•,−) : K(X–torsinj) −−→ K(X–flat).

Composing the latter functor with the canonical triangulated Verdier quotient
functor K(X–flat) −→ D(X–flat), we obtain a triangulated functor

(7) HomX-qc(E
•,−) : K(X–torsinj) −−→ D(X–flat).

It is straightforward to see that the functor (6) is right adjoint to the functor (4).
Hence the functor (7) is right adjoint to the functor (5).
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It remains to show that the functors (5) and (7) are mutually inverse equivalences
when E • = D• is a dualizing complex on X. For this purpose, we need to check that
the adjunction morphisms are isomorphisms.

Let F• ∈ C(X–flat) be a complex of flat pro-quasi-coherent pro-sheaves on X. Then
the adjunction F• −→ HomX-qc(D•, D• ⊗X F•) is a natural morphism in C(X–flat);
we need to show that it is an isomorphism in D(X–flat). By Lemma 4.13, it suffices
to check that i∗F• −→ i∗HomX-qc(D•, D• ⊗X F•) is an isomorphism in D(Z–flat).
According to the discussion above, we have isomorphisms of complexes

i∗HomX-qc(D
•, D• ⊗X F•) ' HomZ-qc(i

!D•, i!(D• ⊗X F•))

' HomZ-qc(i
!D•, i!D• ⊗OZ i∗F•).

So we have to show that the natural morphism F• −→ HomZ-qc(i
!D•, i!D• ⊗OZ F•)

is an isomorphism in D(Z–flat) for every complex F• of flat quasi-coherent sheaves
on Z.

By the definitions of a dualizing complex on X and on Z (see Section 4.2), the
complex of injective quasi-coherent sheaves i!D• on Z is homotopy equivalent to a
bounded complex of injective quasi-coherent sheaves D•Z (which is also a dualizing
complex on Z). So the complex of flat quasi-coherent sheavesHomZ-qc(i

!D•, i!D•⊗OZ
F•) on Z is homotopy equivalent to the complex of flat quasi-coherent sheaves
HomZ-qc(D•Z , D•Z ⊗OZ F•). Finally, the assertion that the natural morphism of
complexes of flat quasi-coherent sheaves F• −→ HomZ-qc(D•Z , D•Z ⊗OZ F•) is an iso-
morphism in D(Z–flat) is essentially a part of Theorem 4.22 for the semi-separated
Noetherian scheme Z.

Similarly, let J • ∈ C(X–torsinj) be a complex of injective quasi-coherent torsion
sheaves on X. Then the adjunction D• ⊗X HomX-qc(D•,J •) −→ J • is a natural
morphism in C(X–torsinj); we have to show that it is a homotopy equivalence. By
Lemma 4.21, it suffices to check that i!(D• ⊗X HomX-qc(D•,J •)) −→ i!J • is a
homotopy equivalence of complexes in Z–qcohinj. According to the discussion above,
we have isomorphisms of complexes

i!(D• ⊗X HomX-qc(D
•,J •)) ' i!D• ⊗OZ i∗HomX-qc(D

•,J •)

' i!D• ⊗OZ HomZ-qc(i
!D•, i!J •).

So we have to show that the natural morphism i!D• ⊗OZ HomZ-qc(i
!D•,J •) −→ J •

is a homotopy equivalence of complexes in Z–qcohinj for every complex J • of injective
quasi-coherent sheaves on Z.

As above, the complex of injective quasi-coherent sheaves i!D•⊗OZ HomZ-qc(i
!D•,

J •) on Z is homotopy equivalent to the complex of injective quasi-coherent sheaves
D•Z ⊗OZ HomZ-qc(D•Z ,J •). Once again, the assertion that the natural morphism of
complexes of injective quasi-coherent sheaves D•Z ⊗OZ HomZ-qc(D•Z ,J •) −→ J • is a
homotopy equivalence is essentially a part of Theorem 4.22. �
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5. The Cotensor Product

The triangulated tensor structure on the coderived category Dco(X–qcoh) of quasi-
coherent sheaves on a Noetherian scheme with a dualizing complex D• was introduced
in [31, Propositions 6.2, 8.10, and B.6] and studied in [12, Section B.2.5], where it
was denoted by �D• and called the cotensor product of complexes of quasi-coherent
sheaves on X over the dualizing complex D•. The aim of this section is to generalize
this construction to complexes of quasi-coherent torsion sheaves on an ind-Noetherian
ind-scheme with a dualizing complex, and explain the connection with the cotensor
product of complexes of comodules over a cocommutative coalgebra.

5.1. Construction of cotensor product. We start with a lemma about tensor
products of complexes of quasi-coherent sheaves on a scheme.

Lemma 5.1. Let M• ∈ C(X–qcoh) be a complex of quasi-coherent sheaves and F•,
G• ∈ C(X–flat) be two complexes of flat quasi-coherent sheaves on a scheme X.

(a) If the complex F• is acyclic in X–flat, then the complex F•⊗OXM• is acyclic
in X–qcoh.

(b) If the complex F• is acyclic in X–flat, then the complex F• ⊗OX G• is acyclic
in X–flat.

(c) If the complex M• is coacyclic in X–qcoh, then the complex F• ⊗OX M• is
coacyclic in X–qcoh.

(d) If the complex F• is acyclic in X–flat and the scheme X is Noetherian, then
the complex F• ⊗OXM• is coacyclic in X–qcoh.

Proof. The assertions (a–b) are essentially local and reduce to the case of an affine
scheme X. In this context, both the assertions are explained by the observation that
over an (arbitrary associative) ring R, an acyclic (in R–mod) complex of flat modules
is homotopy flat if and only if it has flat modules of cocycles.

Specifically, part (a) is provable by representing M• as a direct limit of bounded
complexes (with a silly truncation on the left and a canonical truncation on the
right). This reduces the question to the case of a one-term complexM• =M, which
is obvious. To prove part (b), it suffices to check that the complex F•⊗OX G•⊗OX N
is exact in X–qcoh for every sheaf N ∈ X–qcoh. This follows from part (a) applied
to the complexes F• and M• = G• ⊗OX N .

The assertions (c–d) are essentially local, too (assuming that X is either quasi-
compact and semi-separated or else Noetherian). But this needs to be explained
(we postpone this discussion to Section A.2 of the appendix; cf. [12, Remark 1.3]).
Part (c) is straightforward: it suffices to observe that the functor F• ⊗OX − takes
short exact sequences of complexes in X–qcoh to short exact sequences of complexes
in X–qcoh and preserves coproducts of complexes in X–qcoh.

Part (d): by Corolary 4.18, there exists a complex of injective quasi-coherent
sheaves J • on X endowed with a morphism of complexes M• −→ J • whose cone
N • is coacyclic in X–qcoh. By part (c), the complex F• ⊗OX N • is coacyclic in
X–qcoh. It remains to check that the complex F•⊗OX J • is coacyclic in X–qcoh; in
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fact, this complex is contractible. This is the result of [35, Corollary 9.7(ii)] (see [35,
Theorem 8.6] for context) and [31, Lemma 8.2].

Let us spell out some details, following [35, 31]. By Lemma 4.4(b), F• ⊗OX J • is
a complex of injective quasi-coherent sheaves on X. A complex of injective objects
is coacyclic if and only if it is contractible, and if and only if its objects of cocycles
are injective. Injectivity of a quasi-coherent sheaf on a Noetherian scheme is a local
property; hence the question is local and reduces to affine schemes.

Let F • be a complex of flat modules over a Noetherian commutative ring R and J•

be a complex of injective R-modules. Assume that the complex F • is acyclic in R–flat.
Let L be a finitely generated (equivalently, finitely presentable) R-module. Then
we have a natural isomorphism of complexes of R-modules HomR(L, F • ⊗R J•) '
F • ⊗R HomR(L, J•). By part (a), the complex F • ⊗R HomR(L, J•) is acyclic. By
Lemma 4.20, acyclicity of the complexes HomR(L, F •⊗RJ•) for all finitely generated
R-modules L implies contractibility of the complex F • ⊗R J•. �

Let P• and Q• ∈ C(X–pro) be two complexes of pro-quasi-coherent pro-sheaves
on an ind-scheme X. Then the complex P• ⊗X Q• ∈ C(X–pro) is constructed by
totalizing the bicomplex Pp ⊗X Qq, p, q ∈ Z, by taking infinite coproducts in X–pro
along the diagonals of the bicomplex. Since the full subcategory X–flat is closed
under coproducts in X–pro (see Section 3.5), the tensor product of two complexes in
X–flat is a complex in X–flat,

(8) ⊗X : C(X–flat)× C(X–flat) −−→ C(X–flat).

Similarly, let P• ∈ C(X–pro) be a complex of pro-quasi-coherent pro-sheaves and
M • ∈ C(X–tors) be a complex of quasi-coherent torsion sheaves on a reasonable
ind-scheme X. Then the complex P•⊗X M • ∈ C(X–tors) is constructed by totalizing
the bicomplex Pp ⊗X M q, p, q ∈ Z, by taking infinite coproducts in X–tors along
the diagonals of the bicomplex (as in the construction of the tensor product functor
in the proof of Theorem 4.23). In particular, we have

(9) ⊗X : C(X–flat)× C(X–tors) −−→ C(X–tors).

As the tensor product on X–pro and the action of X–pro in X–tors preserve coprod-
ucts in both the categories (see Section 3.5), the above tensor products of complexes
are associative. So C(X–pro) is a tensor category, C(X–flat) ⊂ C(X–pro) is a tensor
subcategory, and C(X–tors) is a module category over C(X–pro). Hence, in particular,
C(X–tors) is a module category over C(X–flat).

The tensor product functors (8–9) obviously descend to the homotopy categories,
providing tensor product functors

⊗X : K(X–flat)× K(X–flat) −−→ K(X–flat),(10)

⊗X : K(X–flat)× K(X–tors) −−→ K(X–tors),(11)

making K(X–flat) a tensor triangulated category and K(X–tors) a triangulated module
category over K(X–flat).

61



Lemma 5.2. (a) Let X be an ind-scheme and F•, G• ∈ C(X–flat) be two complexes
of flat pro-quasi-coherent pro-sheaves on X. Assume that the complex F• is acyclic
in X–flat. Then the complex F• ⊗X G• is acyclic in X–flat.

(b) Let X be a reasonable ind-scheme, F• ∈ C(X–flat) be a complex of flat pro-
quasi-coherent pro-sheaves on X, and M • ∈ C(X–tors) be a complex of quasi-coherent
torsion sheaves on X. Assume that the complex M • is coacyclic in X–tors. Then the
complex F• ⊗X M • is coacyclic in X–tors.

(c) Let X be an ind-Noetherian ind-scheme, F• ∈ C(X–flat) be a complex of flat
pro-quasi-coherent pro-sheaves on X, and M • ∈ C(X–tors) be a complex of quasi-
coherent torsion sheaves on X. Assume that the complex F• is acyclic in X–flat.
Then the complex F• ⊗X M • is coacyclic in X–tors.

Proof. Part (a) follows from Lemmas 4.13 and 5.1(b). Part (b) holds, because the
functor F• ⊗X − takes short exact sequences of complexes in X–tors to short exact
sequences of complexes in X–tors and preserves coproducts of complexes in X–tors.
Similarly one shows that the complex F• ⊗X M • is coacyclic in X–tors whenever the
complex F• is coacyclic in X–flat and M • is an arbitrary complex in X–tors.

Part (c): by Corollary 4.18, there exists a complex of injective quasi-coherent
torsion sheaves J • ∈ K(X–torsinj) together with a morphism of complexes M • −→
J • whose cone N • is coacyclic in X–tors. By part (b), the complex F• ⊗X N • is
coacyclic in X–tors. It remains to check that the complex F• ⊗X J • is coacyclic in
X–tors. In fact, we will show that this complex is contractible.

Indeed, according to the arguments in the beginning of the proof of Theorem 4.23
in Section 4.5, F• ⊗X J • is a complex of injective quasi-coherent torsion sheaves
on X. Furthermore, for any closed subscheme Z ⊂ X with the closed immersion
morphism i : Z −→ X, Proposition 3.7 provides a natural isomorphism of complexes
of quasi-coherent sheaves i!(F• ⊗X J •) ' i∗F• ⊗OZ i!J • on Z. In the situation
at hand, the complex i∗F• is acyclic in Z–flat, while i!J • is a complex of injective
quasi-coherent sheaves on Z; hence, by (the proof of) Lemma 5.1(d), the complex of
injective quasi-coherent sheaves i∗F•⊗OZ i!J • on Z is contractible. By Lemma 4.21,
it follows that the complex F• ⊗X J • in X–torsinj is contractible, too. �

Let X be an ind-Noetherian ind-scheme. It is clear from Lemma 5.2 that the tensor
product functors (10–11) descend to the derived and coderived categories, providing
tensor product functors

⊗X : D(X–flat)× D(X–flat) −−→ D(X–flat),(12)

⊗X : D(X–flat)× Dco(X–tors) −−→ Dco(X–tors).(13)

So D(X–flat) is a tensor triangulated category and Dco(X–tors) is a triangulated mod-
ule category over D(X–flat).

Now let X be an ind-semi-separated ind-Noetherian ind-scheme with a dualizing
complex D•. Then the triangulated equivalence D•⊗X− : D(X–flat) −→ Dco(X–tors)
from Theorem 4.23 is an equivalence of module categories over D(X–flat). This follows
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from the associativity of the tensor products,

(F• ⊗X G•)⊗X D• ' F• ⊗X (G• ⊗X D•)

for all complexes of flat pro-quasi-coherent pro-sheaves F• and G• on X.
Using the triangulated equivalence D(X–flat) ' Dco(X–tors), we transfer the tensor

structure of the category D(X–flat) to the category Dco(X–tors). The resulting functor

(14) �D• : Dco(X–tors)× Dco(X–tors) −−→ Dco(X–tors),

defining a tensor triangulated category structure on Dco(X–tors), is called the coten-
sor product of complexes of quasi-coherent torsion sheaves on X over the dualizing
complex D•. Explicitly, we have

M • �D• N • = D• ⊗X (HomX-qc(D
•,K •)⊗X HomX-qc(D

•,J •))

'M • ⊗X HomX-qc(D
•,J •)

in Dco(X–tors) for any complexes M • and N • ∈ K(X–tors) endowed with morphisms
with coacyclic cones M • −→ K • and N • −→ J • into complexes K • and J • ∈
K(X–torsinj). The dualizing complex D• ∈ Dco(X–tors) is the unit object of the tensor
structure �D• on Dco(X–tors), since D• corresponds to the unit object OX ∈ D(X–flat)
under the equivalence of categories D(X–flat) ' Dco(X–tors).

Remarks 5.3. The cotensor product functor �D• (14) is “similar to a right derived
functor” in the following sense (see Theorem 6.35 below for a much more specific
assertion).

(1) Given an additive category A, let us denote by K≤0(A) and K≥0(A) ⊂ K(A)
the full subcategories in the homotopy category consisting of complexes concen-
trated in the nonpositive and nonnegative cohomological degrees, respectively. For
an abelian category A, the notation D≤0(A) and D≥0(A) is understood similarly.
When A is abelian, a complex A• ∈ D+(A) is said to have injective dimension ≤ 0 if
HomD+(A)(C

•, A•) = 0 for all bounded complexes C• ∈ D≥0(A). When A is abelian
with enough injective objects, a bounded below complex in A has injective dimen-
sion ≤ 0 if and only if it is quasi-isomorphic to a bounded complex in K≤0(Ainj).

For any abelian category A with exact functors of infinite direct sum, the full
subcategories of nonpositively and nonnegatively situated complexes Dco,≤0(A) and
Dco,≥0(A) form a t-structure (of the derived type) on the coderived category Dco(A)
[40, Remark 4.1], [55, Proposition 5.5]. Furthermore, if there are enough injective
objects in A, then for any complex A• ∈ K≥0(A) there is a complex J• ∈ K≥0(Ainj)
together with a quasi-isomorphism A• −→ J• of complexes in A. Since any bounded
below acyclic complex is coacyclic [40, Lemma 2.1] (cf. [44, Lemma A.1.2(a)]), the
morphism of complexes A• −→ J• is an isomorphism in Dco(A). So we have equiva-
lences of categories K≥0(Ainj) ' Dco,≥0(A) ' D≥0(A).

(2) In the context of the exposition above in this section, assume that the du-
alizing complex D• is concentrated in the nonpositive cohomological degrees, D• ∈
K≤0(X–torsinj). For any complexes M •, N • ∈ K≥0(X–tors), one can choose a complex
J • ∈ K≥0(X–torsinj) together with a morphism with (co)acyclic cone N • −→ J •.
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Then one has HomX-qc(D•,J •) ∈ K≥0(X–flat) and M • ⊗X HomX-qc(D•,J •) ∈
K≥0(X–tors). Thus the functor �D• (14) restricts to a functor

�D• : Dco,≥0(X–tors)× Dco,≥0(X–tors) −−→ Dco,≥0(X–tors).

(3) Let us explain why the assumption that D• ∈ K≤0(X–torsinj) is mild and reason-
able. Suppose that the ind-scheme X is of ind-finite type over a Noetherian scheme S
with a dualizing complex D•. Without loss of generality, one can assume D• to be a
bounded complex of injective quasi-coherent sheaves on S; shifting if necessary, one
can assume further that D• ∈ K≤0(S–qcohinj). Let Z ⊂ X be a closed subscheme; so
we have a morphism of finite type Z −→ S.

The idea is to use the extraordinary inverse image functor in order to lift D• to
a dualizing complex D•Z on Z. Given a morphism of finite type between Noetherian
schemes f : Y −→ X, the relevant functor is denoted by f ! in [19] and Deligne’s
appendix to [19] (where it was first constructed, under mild assumptions on f); in
the terminology and notation of [44], it is called the extraordinary inverse image
functor in the sense of Deligne and denoted by f+ : D+(X–qcoh) −→ D+(Y –qcoh).

First of all one observes that the derived direct image functor Rf∗ : D+(Y –qcoh) −→
D+(X–qcoh) has a right adjoint functor; this functor is called the extraordinary
inverse image functor in the sense of Neeman and denoted by f ! in [44]. Both
the functor Rf∗ and its right adjoint f ! are also well-defined on the unbounded
derived categories and the coderived categories. In particular, for a closed immersion
i : Z −→ Y , the triangulated functor i! = Ri! : D+(Y –qcoh) −→ D+(Z–qcoh) is
simply the right derived functor of the left exact functor i! : Y –qcoh −→ Z–qcoh.

The functor f+ is essentially characterized by three properties: for a composable
pair of morphisms f and g, one has (fg)+ ' g+f+; for an open immersion g, one
has g+ = g∗; for a proper morphism f , one has f+ = f !. In particular, for a closed
immersion i one has i+ = Ri!. For a smooth morphism f , the functor f+ only differs
from f ∗ by a shift and a twist [19, Chapter III].

The functor f+ takes dualizing complexes to dualizing complexes [19, Proposi-
tion V.2.4, Theorem V.8.3 and Remark in Section V.8]. More precisely, in our termi-
nology one can say that, given a morphism f : Y −→ X and a dualizing complex D•X
on X, the object f+D•X ∈ D+(Y –qcoh) is quasi-isomorphic to a dualizing complex
(of injective quasi-coherent sheaves) D•Y on Y .

Concerning an unbounded version of the functor f+, it turns out to be well-defined
as a functor between the coderived categories f+ : Dco(X–qcoh) −→ Dco(Y –qcoh), but
not as a functor between the conventional unbounded derived categories D(X–qcoh)
and D(Y –qcoh) [16], [44, Introduction and Section 5.16].

In the recent overview [38], the notation f× is used for the functor which we denote
by f !, and the notation f ! is used for the functor which we denote by f+.

(4) The key observation for our purposes is that the functor f+ takes complexes
of injective dimension ≤ 0 to complexes of injective dimension ≤ 0. Indeed, the re-
striction to an open subscheme in a Noetherian scheme preserves injective dimension,
since it preserves injectivity. It remains to see that the right adjoint functor f ! to the
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functor Rf∗ preserves injective dimension. Indeed, ifN • ∈ D≥0(Y –qcoh) is a bounded
complex and K• ∈ K≤0(X–qcohinj) is a bounded complex of injective dimension ≤ 0,
then

HomD+(Y –qcoh)(N •, f !K•) ' HomD+(X–qcoh)(Rf∗N •,K•) = 0

since Rf∗N • ∈ D≥0(X–qcoh).

(5) Returning to the situation at hand, we have a closed subscheme Z ⊂ X; denote
by pZ : Z −→ S the related morphism, and let D•Z be a dualizing complex (of in-
jective quasi-coherent sheaves) on Z quasi-isomorphic to p+

ZD• ∈ D+(Z–qcoh). The
argument above allows to have D•Z ∈ K≤0(Z–qcohinj). For any pair of closed sub-
schemes Z ⊂ Y ⊂ D• with the related open immersion i : Z −→ Y , the complex
i!D•Y ∈ K≤0(Z–qcohinj) is naturally homotopy equivalent to D•Z , since pZ = pY i and

i+ ' Ri!. In this sense, the dualizing complexes D•Z on closed subschemes Z ⊂ X
agree with each other up to homotopy equivalence.

Assuming additionally that X is an ℵ0-ind-scheme, one can apply the construction
of Example 4.7 in order to produce a dualizing complex D• ∈ K≤0(X–tors) on X out
of the dualizing complexes D•Z on the closed subschemes Z ⊂ X.

5.2. Ind-Artinian examples. The following example explains the terminology
“coderived category” and “cotensor product”.

Examples 5.4. (1) Let C be a coassociative, counital coalgebra over a field k. Let
M be a right C -comodule and N be a left C -comodule. Then the cotensor product
M �C N is the k-vector space constructed as the kernel of the difference of the
natural pair of maps

M ⊗k N ⇒ M ⊗k C ⊗k N .

Here one map M ⊗k N −→ M ⊗k C ⊗k N is induced by the right coaction map
M −→M ⊗k C and the other one by the left coaction map N −→ C ⊗k N .

(2) When the coalgebra C is cocommutative, there is no difference between left and
right C -comodules. Moreover, the cotensor product M �C N of two C -comodules
M and N has a natural C -comodule structure in this case. The cotensor product
operation �C makes the abelian category of C -comodules C –comod an associative,
commutative, and unital tensor category with the unit object C ∈ C –comod.

(3) For any coalgebra C as in (1), the categories C –comod and comod–C of left
and right C -comodules are locally Noetherian (in fact, locally finite) Grothendieck
abelian categories, so Proposition 4.15 with Lemma 4.16 are applicable. Hence the
coderived categories of C -comodules are equivalent to the respective homotopy cat-
egories of (complexes of) injective comodules, Dco(C –comod) ' K(C –comodinj) and
Dco(comod–C ) ' K(comodinj–C ).

The left C -comodule C is an injective cogenerator of C –comod; moreover, a
C -comodule is injective if and only if it is a direct summand of a direct sum of
copies of the C -comodule C . For a given left C -comodule J , the coproduct func-
tor − �C J : comod–C −→ k–vect is exact if and only if J is an injective left
C -comodule (and similarly for a right C -comodule). Here k–vect denotes the cate-
gory of k-vector spaces.
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The functor of cotensor product of complexes of comodules

�C : C(comod–C )× C(C –comod) −−→ C(k–vect)

is constructed in the obvious way (totalizing the bicomplex of cotensor products
by taking direct sums along the diagonals). To define the right derived functor of
cotensor product

�R
C : Dco(comod–C )× Dco(C –comod) −−→ D(k–vect),

suppose that we are given a complex of right C -comodules M • and a complex of left
C -comodules N •. Let M • −→ K • be a morphism in C(comod–C ) from M • to a
complex of injective right C -comodules K • such that the cone of M • −→ K • is
coacyclic in comod–C . Let N • −→J • be a similar resolution of the complex of left
C -comodules N •; so J • ∈ C(C –comodinj) and the cone is coacyclic in C –comod.
Then the derived cotensor product is defined as the object

M • �R
C N • = K • �C J • 'M • �C J • ' K • �C N • ∈ D(k–vect).

We refer to [40, Section 0.2] for a discussion.

(4) For a cocommutative coalgebra C as in (2), the functor of cotensor product of
complexes of comodules

�C : C(C –comod)× C(C –comod) −−→ C(C –comod)

is constructed, once again, by totalizing the complex of cotensor products by taking
coproducts along the diagonals (notice that the forgetful functor C –comod −→ k–vect
preserves coproducts). The construction of the right derived functor of cotensor
product

�R
C : Dco(C –comod)× Dco(C –comod) −−→ Dco(C –comod)

is similar to the one in (3). In the same notation and the same conditions on the
resolutions M • −→ K • and N • −→J •, we put

M • �R
C N • = K • �C J • 'M • �C J • ' K • �C N • ∈ Dco(C –comod).

The derived tensor product operation �R
C makes Dco(C –comod) an associative, com-

mutative, and unital tensor triangulated category.

(5) For a cocommutative coalgebra C , let X = Spi C ∗ be the ind-Artinian ind-
scheme corresponding to C as per the construction from Example 1.5(2) and the
discussion in Example 4.1(2). According to Section 2.4(4), the abelian category
X–tors of quasi-coherent torsion sheaves on X is equivalent to the abelian category
of C -comodules C –comod.

Notice that any Artinian scheme admits a dualizing injective quasi-coherent sheaf,
i. e., a dualizing complex which is a one-term complex of injective quasi-coherent
sheaves. In particular, for any finite-dimensional cocommutative coalgebra E over k,
the quasi-coherent sheaf on Spec E∗ corresponding to the injective E∗-module E is
a dualizing complex on Spec E∗. It follows that the injective quasi-coherent torsion
sheaf on Spi C ∗ corresponding to the injective C -comodule C is a dualizing complex
on Spi C ∗.
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Following the proof of Theorem 4.23 specialized to the particular case of a one-
term dualizing complex of injectives D• = C , one can see that there is an equivalence
of additive categories of injective quasi-coherent torsion sheaves and flat pro-quasi-
coherent pro-sheaves on X, provided by the mutually inverse functors HomX-qc(C ,−)
and C ⊗X −,

(15) HomX-qc(C ,−) : X–torsinj ' X–flat :C ⊗X −.
Moreover, this equivalence transforms short exact sequences in X–flat into split short
exact sequences in X–torsinj; so the exact category structure on X–flat is split.

(6) We refer to [40, Section 0.2.4] or [45, Section 1] for an introductory discussion
of the category of left contramodules C –contra over a coassociative coalgebra C .
Contramodules over a coalgebra C are the same thing as contramodules over the
topological ring R = C ∗ [43, Section 1.10], [45, Sections 2.1 and 2.3].

The category C –contra is abelian with enough projective objects. Denoting by
C –contraproj ⊂ C –contra the full subcategory of projective C -contramodules, one has
a natural equivalence of additive categories [40, Section 0.2.6], [45, Sections 1.2 and
3.1], [41, Sections 5.1–5.2]

(16) HomC (C ,−) : C –comodinj ' C –contraproj :C �C −.
Here HomC = HomC –comod denotes the k-vector space of morphisms in the abelian
category C –comod, while �C is the contratensor product functor.

For a cocommutative coalgebra C , it is not difficult to construct a pair of adjoint
functors between the additive categories X–pro and C –contra (cf. Examples 3.8).
For a finite-dimensional subcoalgebra E ⊂ C , let XE ⊂ X denote the closed sub-
scheme Spec E∗ ⊂ Spi C ∗. For a finite-dimensional coalgebra E , the category of
E-contramodules is naturally equivalent to the category of E∗-modules.

The left adjoint functor C –contra −→ X–pro assigns to a C -contramodule G the
pro-quasi-coherent pro-sheaf P whose component P(XE) is the E∗-module produced
as the maximal quotient contramodule of G whose C -contramodule structure comes
from an E-contramodule structure. The right adjoint functor X–pro −→ C –contra
assigns to a pro-quasi-coherent pro-sheaf P the projective limit lim←−E⊂C

P(XE).

Furthermore, it is well-known that all flat modules over an Artinian ring are pro-
jective. Moreover, all (contra)flat contramodules over a coalgebra over a field are
projective [40, Sections 0.2.9 and A.3]. The functor C –contra −→ X–pro restricts to
a functor C –contraproj −→ X–flat, which is obviously fully faithful.

Comparing the two equivalences of additive categories (15) and (16) and taking into
account the equivalence X–torsinj ' C –comodinj induced by the equivalence X–tors '
C –comod, one can see that the functor C –contraproj −→ X–flat is an equivalence
of additive categories. Moreover, the projective limit functor X–pro −→ C –contra
restricts to a functor X–flat −→ C –contraproj, providing the inverse equivalence.

Similarly to Example 3.8(3), the equivalences of categories X–tors ' C –comod and
X–flat ' C –contraproj transform the tensor product functor ⊗X : X–tors× X–flat −→
X–tors into the contratensor product functor�C : C –comod×C –contra −→ C –comod
restricted to C –contraproj ⊂ C –contra.
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(7) Let us explain why the equivalence of coderived categories Dco(X–tors) '
Dco(C –comod) induced by the equivalence of abelian categories X–tors ' C –comod
transforms the cotensor product functor �D• (14) from Section 5.1 for the dualiz-
ing complex D• = C on the ind-scheme X = Spi C ∗ into the right derived cotensor
product functor �R

C from Example 5.4(4).
Let E ⊂ C be a finite-dimensional subcoalgebra and iE : XE −→ X be the re-

lated immersion of the closed subscheme into the ind-scheme. Then the functor
i!E : X–tors −→ XE–qcoh corresponds, under the equivalences of abelian categories
X–tors ' C –comod and XE–qcoh ' E–comod, to the functor C –comod −→ E–comod
assigning to an C -comodule M its maximal subcomodule M(E) ⊂ M whose
C -comodule structure comes from an E-comodule structure. The E-comodule M(E)

can be computed as the cotensor product

M(E) ' E �C M .

Consequently, for any two C -comodules M and N one has

(M �C N )(E) ' E �C M �C N ' (E �C M ) �E (E �C N ) 'M(E) �E N(E).

Together with the computations in the proof of Theorem 4.23, this reduces the ques-
tion to the case of a finite-dimensional coalgebra E and related Artinian scheme
XE = Spec E∗, for which it means the following.

LetM be an E-comodule and J be an injective E-comodule (we recall once again
that an E-comodule is the same thing as an E∗-module). Then there are natural
isomorphisms of E-comodules

M �E J 'M �E (E ⊗E∗ HomE∗(E ,J ))

' (M �E E)⊗E∗ HomE∗(E ,J ) 'M⊗E∗ HomE∗(E ,J ).

Here the injective E-comodule E corresponds to the dualizing (one-term) complex
D• = i!ED

• on the scheme XE under the equivalence of categories XE–qcoh '
E–comod, where D• ∈ X–tors corresponds to C ∈ C –comod under X–tors '
C –comod, as per the discussion in (5). Notice that the E∗-module HomE∗(E ,J ) is
projective for any injective E∗-module J .

(8) Alternatively, one can avoid the reduction to finite-dimensional coalgebras when
establishing the comparison between �D• and �R

C , by using C -contramodules and the
discussion of the equivalence X–flat ' C –contraproj in (6).

In this context, the desired comparison is expressed by the natural isomorphisms
of C -comodules

M �C J 'M �C (C �C HomC (C ,J ))

' (M �C C )�C HomC (C ,J ) 'M �C HomC (C ,J ),

which hold for any C -comodule M and any injective C -comodule J . We refer
to [40, Proposition 5.2.1] or [45, Proposition 3.1.1] for a discussion on this kind of
associativity isomorphisms connecting the cotensor and contratensor products.
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Our next aim is to discuss the torsion product functor TorR1 (−,−) for modules
over a Dedekind domain R. Let Q denote the field of quotients of R. The motivating
example for us is the case of torsion abelian groups, when R = Z and Q = Q. We refer
to the book [25, Section V.6] or the overview [22] for the explicit construction and
discussion of the torsion products of abelian groups (see also the classical paper [39]).
Let us start the discussion in a more general context of a Noetherian ring of Krull
dimension 1 before specializing to Dedekind domains.

Examples 5.5. (1) Let R be a Noetherian commutative ring of Krull dimension ≤ 1,
and let S ⊂ R denote the complement to the union of all the nonmaximal prime ideals
in R. Notice that all the nonmaximal prime ideals in R are minimal, hence there
is only a finite number of nonmaximal prime ideals; so an ideal I ⊂ R does not
intersect S if and only if it is contained in one of the nonmaximal prime ideals. If
I does intersect S, then R/I is an Artinian ring. We refer to [49, Section 13] for a
more detailed discussion of this setting.

Let Γ denote the directed poset of all ideals in R intersecting S, with respect
to the reverse inclusion order. To every ideal I ∈ Γ, assign the Artinian scheme
XI = SpecR/I. Whenever I ′′ ⊂ I ′ are two ideals in R, with I ′′ intersecting S, there
is a unique (surjective) ring homomorphism R/I ′′ −→ R/I ′ forming a commutative
triangle diagram with the natural projections R −→ R/I ′′ and R −→ R/I ′. Let
XI′ −→ XI′′ be the related closed immersion of Artinian schemes. The inductive
system of schemes (XI)I∈Γ represents an ind-Artinian ind-scheme X. The ind-scheme
X comes together with an ind-closed immersion of ind-schemes X −→ SpecR (in the
sense of Examples 4.8).

(2) In the context of (1), let R be the topological ring R = lim←−I∈Γ
R/I, with

the topology of projective limit of discrete rings R/I. The topological ring R can

be computed as the topological product R =
∏

m⊂R R̂m, where m ranges over the

maximal ideals of R and R̂m is the completion of the local ring Rm. The complete

local ring R̂m is endowed with the m-adic topology and the product
∏

m⊂R R̂m is
endowed with the product topology. Then the ind-scheme X = “lim−→”

I∈Γ
XI from (1)

can be described as X = SpiR, in the notation of Example 1.6(1).
An R-module M is said to be S-torsion if for every b ∈ M there exists s ∈ S

such that sb = 0 in M . Denote by Q = S−1R the localization of the ring R at the
multiplicative subset S. An R-module M is S-torsion if and only if Q ⊗R M = 0.
Denote by R–tors ⊂ R–mod the full subcategory of S-torsion R-modules; clearly,
R–tors is a locally Noetherian (in fact, locally finite) Grothendieck abelian category,
which is closed under subobjects, quotients, and extensions as a full subcategory in
R–mod. The category of S-torsion R-modules is naturally equivalent to the category
of discrete R-modules and to the category of quasi-coherent torsion sheaves on X,
that is R–tors ' R–discr ' X–tors (cf. Section 2.4(6)).

The ind-scheme X is the disjoint union (coproduct) of the ind-schemes Spi R̂m over

the maximal ideals m ⊂ R. The topological ring R̂m has a countable base of neigh-

borhoods of zero, so the category of flat pro-quasi-coherent pro-sheaves on Spi R̂m is
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equivalent to the category of flat R̂m-contramodules by Example 3.8(2). Using the
result of [52, Lemma 7.1(b)] providing an equivalence between the abelian category
of R-contramodules R–contra and the Cartesian product of the abelian categories of

R̂m-contramodules R̂m–contra, one can conclude that the category of flat pro-quasi-
coherent pro-sheaves on X is equivalent to the category of flat R-contramodules,
X–flat ' R–flat. The construction of this equivalence is similar to the one in
Example 3.8(1). In fact, by [52, Corollary 8.4 or Theorem 10.1(vi)⇒(iii)], all flat
R-contramodules are projective, R–flat = R–contraproj.

(3) The following description of the category X–flat may be more instructive. An
R-module C is said to be S-reduced if it has no submodules in which all the ele-
ments of S act by invertible operators; equivalently in our context, this means that
HomR(Q,C) = 0 [49, Theorem 13.8(a)]. An R-module C is said to be S-weakly co-
torsion if Ext1

R(Q,C) = 0; equivalently in our context, this means that C is cotorsion,
that is Ext1

R(F,C) = 0 for all flat R-modules F [49, Theorem 13.9(b)].
Reduced cotorsion abelian groups were called “co-torsion” in [18], and R-modules

C satisfying HomR(Q,C) = 0 = Ext1
R(Q,C) (for a domain R and the multiplica-

tive subset S = R \ {0}) were called “cotorsion” in [27]. R-modules C satisfying
HomR(Q,C) = 0 = Ext1

R(Q,C) are called “S-contramodules” in [50, 5].
We claim that the category of flat pro-quasi-coherent pro-sheaves X–flat is natu-

rally equivalent to the category of flat S-reduced cotorsion R-modules. The equiv-
alence assigns to a flat pro-quasi-cohererent pro-sheaf F ∈ X–flat the R-module
lim←−I∈Γ

F(XI)(XI). Conversely, to a flat S-reduced cotorsion R-module F , the flat

pro-quasi-coherent pro-sheaf F with the components F(XI) ∈ XI–flat corresponding
to the flat R/I-modules F/IF is assigned.

Indeed, by the result of [49, Corollary 13.13(b)] or [5, Corollary 6.17], taken to-
gether with [43, Theorem B.1.1] and [52, Lemma 7.1(b)], the category S-reduced
cotorsion R-modules is abelian and equivalent to the category of R-contramodules
(the equivalence being provided by the forgetful functor R–contra −→ R–mod). It

remains to notice that an R̂m-contramodule is flat, or equivalently, projective (as a
contramodule) if and only if it is a flat R-module [49, Corollary 10.3(a) or Theo-
rem 10.5], [43, Corollary B.8.2].

The equivalence of abelian categories X–tors ' R–tors ⊂ R–mod and the fully
faithful functor X–flat ' R–flat −→ R–mod identify the tensor product functor
⊗X : X–tors × X–flat −→ X–flat with the restriction of the tensor product functor
⊗R : R–tors× R–mod −→ R–tors to the full subcategory of flat S-reduced cotorsion
R-modules in the second argument.

(4) Choosing a dualizing complex D• on SpecR, one can use the construction of
Example 4.8(3) to obtain a dualizing complex D• on X. This construction allows
to produce a dualizing complex which would be a two-term complex of injective
quasi-coherent torsion sheaves on X.

Here is how one can construct a dualizing one-term complex on X. Let E ∈ R–mod
be the direct sum of injective envelopes of the simpleR-modulesR/m, wherem ranges
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over the maximal ideals of R (one copy of each). Then E is an injective S-torsion
R-module, E ∈ R–torsinj (notice that an S-torsion R-module is injective in R–mod
if and only if it is injective in R–tors, since R is Noetherian). Let E ∈ X–torsinj be
an injective quasi-coherent torsion sheaf corresponding to E under the equivalence
R–tors ' X–tors. Then D• = E is a one-term dualizing complex on X.

Indeed, let iI : XI −→ X denote the natural closed immersion. Then the quasi-
coherent sheaf i!IE on XI corresponds to an injective R/I-module which is the direct
sum of the injective envelopes of the simple modules over the Artinian ring R/I.
Since, by Matlis duality [26, Theorem 3.7], the injective envelope of the residue field
of a local Artinian ring is a dualizing complex, i!IE is a dualizing complex on XI .

(5) Similarly to Example 5.4(5), the proof of Theorem 4.23 specialized to the
case of a one-term dualizing complex D• = E shows that there is an equivalence of
additive (split exact) categories of injective quasi-coherent torsion sheaves and flat
pro-quasi-coherent pro-sheaves on X,

(17) HomX-qc(E ,−) : X–torsinj ' X–flat :E ⊗X −.
In view of the above interpretation of the categories X–torsinj and X–flat as full sub-
categories in R–mod, this means an equivalence between the additive categories of
injective S-torsion R-modules and flat S-reduced cotorsion R-modules, provided by
the mutually inverse functors HomR(E,−) and E ⊗R −.

Let us warn the reader that this equivalence of additive subcategories in R–mod
is different from the Matlis equivalence between the full subcategories of S-divisible
S-torsion R-modules and S-torsionfree S-reduced cotorsion R-modules [27, Theo-
rem 3.4], [50, Corollary 5.2], which is given by a different pair of adjoint functors.
The equivalence (17) is induced by a dualizing torsion module/complex E, while the
Matlis equivalence is induced by a dedualizing compex R −→ Q (see [46, Introduc-
tion and Remark 4.10] for a discussion of dualizing and dedualizing complexes). For
a Dedekind domain R, the two equivalences are the same.

Let R be a Dedekind domain. In the context of Examples 5.5, we have S = R\{0};
so Q = S−1R is the field of quotients of R. An R-module M is said to be torsion if
for every m ∈ M there exists r ∈ R, r 6= 0, such that rm = 0 in M ; as above, we
denote by R–tors ⊂ R–mod the full subcategory of torsion R-modules.

Notice that Q⊗R TorR1 (M,N) ' TorR1 (Q⊗RM, N) = 0 for all R-modules M and
N , so the R-module TorR1 (M,N) is always torsion. Partly following the notation
in [22], we put M T©Q/R N = TorR1 (M,N) for all torsion R-modules M and N ; so

T©Q/R = TorR1 (−,−) : R–tors×R–tors −−→ R–tors.

The subindex Q/R in our notation T©Q/R is explained by the observation that there
are natural isomorphisms Q/R T©Q/R M ' M ' M T©Q/R Q/R for all torsion
R-modules M .

Notice that TorR2 (M,N) = 0 for all R-modules M and N (since R is a Dedekind
domain). It follows that T©Q/R is a left exact functor. Furthermore, associativity
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of the derived tensor product functor ⊗L
R : D(R–mod) × D(R–mod) −→ D(R–mod)

implies associativity of the functor T©Q/R, as

L T©Q/R (M T©Q/R N) ' H−2(L⊗L
RM ⊗L

R N) ' (L T©Q/RM) T©Q/R N

for all torsion R-modules L, M , and N . So the category R–tors with the functor T©Q/R

is an associative, commutative, and unital tensor category with the unit object Q/R.

Example 5.6. Let k be a field and R = k[x](x) be the localization of the ring of
polynomials k[x] in one variable x at the prime ideal (x) = xk[x] ⊂ k[x]. So the
field of rational functions Q = k(x) = R[x−1] can be obtained by inverting the single
element x ∈ R. Let C be the coalgebra over k whose dual topological algebra is
C ∗ = k[[x]], as mentioned in Examples 1.5. Then the category of torsion R-modules
is naturally equivalent to the category of C -comodules, R–tors ' C –comod. This
equivalence of abelian categories identifies the tensor structure T©Q/R on R–tors with
the tensor structure �C on C –comod.

Let R be a Dedekind domain. Then the homological dimension of the abelian
category R–mod is equal to 1, hence the homological dimension of the abelian cate-
gory R–tors is equal to 1 as well. One easily concludes that the unbounded derived
category D(R–tors) is equivalent to the homotopy category of complexes of injecitves
K(R–torsinj). Similarly, the derived category D(R–mod) is equivalent to the homotopy
category K(R–modinj). It follows that D(R–tors) is a full subcategory in D(R–mod)
(see [50, Theorem 6.6(a)] for a more general result).

The torsion R-module Q/R is an injective cogenerator of R–tors; moreover, a
torsion R-module is injective if and only if it is a direct summand of a direct sum
of copies of Q/R. In fact, the injective R-module Q/R is a direct sum of injective
envelopes of the simple R-modules R/m, where m ranges over the maximal ideals of
R (one copy of each); so in the context of Example 5.5(4) one can take E = Q/R for
a Dedekind domain‘R. For a given torsion R-module J , the torsion product functor
J T©Q/R − : R–tors −→ R–tors is exact if and only if J is injective.

The functor of torsion product of complexes of torsion modules T©Q/R : C(R–tors)×
C(R–tors) −→ C(R–tors) is constructed in the obvious way (using the totalization
by taking the direct sums along the diagonals of the bicomplex). To define the right
derived functor of torsion product

T©R
Q/R : D(R–tors)× D(R–tors) −−→ D(R–tors),

suppose that we are given two complexes of torsion R-modules M • and N •. Let
K• and J• be complexes of torsion R-modules endowed with quasi-isomorphisms
of complexes of torsion R-modules M • −→ K• and N • −→ J•. Then the derived
torsion product is defined as the object

M •
T©R
Q/R N

• = K• T©Q/R J
• 'M •

T©Q/R J
• ' K• T©Q/R N

• ∈ D(R–tors),

similarly to Example 5.4(4).
The right derived torsion product functor agrees with the left derived tensor prod-

uct: restricting the derived tensor product functor ⊗L
R : D(R–mod)×D(R–mod) −→
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D(R–mod) to the full subcategory D(R–tors)×D(R–tors) ⊂ D(R–mod)×D(R–mod),
one obtains the functor T©R

Q/R : D(R–tors)×D(R–tors) −→ D(R–tors). This compar-
ison holds, essentially, because one has M ⊗R J = 0 for any torsion R-module M and
any injective torsion R-module J .

Proposition 5.7. Let R be a Dedekind domain and X = “lim−→”
I∈Γ

XI = Spi lim←−I∈Γ
R/I

be the related ind-Artinian ind-scheme from Examples 5.5. (Here Γ is the poset
of all nonzero ideals in R in the reverse inclusion order, and XI = SpecR/I.)
Let D• = E be the one-term dualizing complex of X corresponding to the in-
jective torsion R-module E = Q/R. Then the equivalence of (co)derived cate-
gories D(X–tors) ' D(R–tors) induced by the equivalence of abelian categories
X–tors ' R–tors transforms the cotensor product functor �D• (14) from Section 5.1
into the right derived torsion product functor T©R

Q/R.

Proof. One can argue similarly to Example 5.4(7), reducing the question to the case
of an Artinian scheme R/I, but we prefer to spell out an argument in the spirit of
Example 5.4(8), working with special classes of R-modules and the ind-scheme X as
a whole. In this context, the desired comparison is expressed by the composition of
the natural isomorphisms of torsion R-modules

M T©Q/R J 'M T©Q/R (Q/R⊗R HomR(Q/R, J))

' (M T©Q/R Q/R)⊗R HomR(Q/R, J) 'M ⊗R HomR(Q/R, J),

which hold for any torsion R-module M and any injective torsion R-module J .
Here the natural isomorphism J ' Q/R ⊗R HomR(Q/R, J) for a divisible torsion

R-module J is due to Harrison [18, Proposition 2.1] and Matlis [27, Theorem 3.4],
while the middle (associativity) isomorphism is provided by part (b) of the next
lemma. �

Lemma 5.8. Let R be a Dedekind domain. Then, for any torsion R-modules M and
E, and any R-module P , there is a natural homomorphism of torsion R-modules

(18) (M T©Q/R E)⊗R P −−→ M T©Q/R (E ⊗R P ),

which is an isomorphism whenever either (a) M is injective, or (b) P is flat.

Proof. This result is analogous to [45, Proposition 3.1.1] (cf. Example 5.6); it is also a
particular case of [43, Lemma 1.7.2(a)]. Denote the left-hand side of (18) by l(M,P )
and the right-hand side by r(M,P ).

There is an obvious isomorphism (18) when P = F is a free R-module with a
fixed set of free generators (since the functor T©Q/R preserves direct sums). It is
straightforward to check that this isomorphism is functorial with respect to arbitrary
morphisms of free R-modules F .

Now let P be the cokernel of a morphism of free R-modules f : F ′ −→ F ′′. Then
there is a natural isomorphism coker(l(M, f)) ' l(M,P ) and a natural morphism
coker(r(M, f)) −→ r(M,P ). As we already have a natural isomorphism of morphisms
l(M, f) ' r(M, f), the desired morphism l(M,P ) −→ r(M,P ) is obtained. Its
functoriality is again straightforward.
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Now we can prove part (a). SinceM is injective and therefore the functorM T©Q/R−
is exact, the natural morphism coker(r(M, f)) −→ r(M,P ) is an isomorphism. Hence
l(M,P ) −→ r(M,P ) is an isomorphism.

Let M be the kernel of a morphism of injective torsion R-modules g : K ′ −→ K ′′.
Then there is a natural morphism l(M,P ) −→ ker(l(g, P )) and a natural isomorphism
r(M,P ) ' ker(r(g, P )) (since the functor T©Q/R is left exact).

Now we can prove part (b). Since P is flat, the morphism l(M,P ) −→ ker(l(g, P ))
is also an isomorphism. As we already know from part (a) that the natural morphism
of morphisms l(g, P ) −→ r(g, P ) is an isomorphism, it follows that the morphism of
torsion modules l(M,P ) −→ r(M,P ) is an isomorphism. �

Example 5.9. Quite generally, let X be an ind-Artinian ind-scheme, and let R be
the related pro-Artinian topological commutative ring such that X = SpiR, as per
Example 4.1(3). According to Section 2.4(6), the abelian category X–tors is equivalent
to the abelian category of discrete R-modules R–discr.

The abelian category R–discr does not have a natural injective cogenerator which
would correspond to a one-term dualizing complex on X. Such an injective discrete
R-module, namely, the direct sum of injective envelopes of all the simple objects in
R–discr, does exist, but it is only defined up to a nonunique isomorphism.

In the memoir [43, Section 1], the category of R-comodules R–comod is defined in
such a way that it comes endowed with a natural injective cogenerator C(R), similar
to the injective cogenerator C of the category of comodules over a cocommutative
coalgebra C , as in Examples 5.4. Accordingly, there is a naturally defined cotensor
product functor �R : R–comod×R–comod −→ R–comod, making R–comod a tansor
category with the unit object C(R).

The choice of an injective object C ∈ R–discr isomorphic to a direct sum of in-
jective cogenerators of simple discrete modules, induces an equivalence of categories
R–discr ' R–comod taking C ∈ R–discr to C ∈ R–comod. So R–discr becomes a
tensor category with the unit object C ; the cotensor product operation �R = �C

defining this tensor structure is described in [43, Section 1.9]. The injective object
C ∈ R–discr corresponds to a one-term dualizing complex on X.

Similarly to Example 5.4(6), the category X–flat can be naturally identified with
the category of flat, or which is the same, projective contramodules over the topo-
logical ring R, that is X–flat ' R–flat = R–contraproj (see [52, Section 2] for the
definition of a flat R-contramodule and [43, Lemma 1.9.1(a)] or [52, Corollary 8.4 or
Theorem 10.1(vi)⇒(iii)] for a proof that all flat contramodules are projective over
a pro-Artinian commutative topological ring R). In particular, the exact category
structure on X–flat is split.

Having chosen a one-term dualizing complex C ∈ X–torsinj, one obtains an equiv-
alence of additive categories as in Example 5.4(5),

HomX-qc(C ,−) : X–torsinj ' X–flat :C ⊗X −,
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which corresponds to the equivalence of additive categories R–comodinj ' R–contraproj

[43, Proposition 1.5.1] under the identifications X–tors ' R–comod and X–flat '
R–contraproj.

Similarly to Example 5.4(4), one constructs the right derived functor of cotensor
product of discrete R-modules

�R
C : Dco(R–discr)× Dco(R–discr) −−→ Dco(R–discr).

The cotensor product functor �D• : Dco(X–tors) × Dco(X–tors) −→ Dco(X–tors) (14)
from Section 5.1 for D• = C is transformed into the functor �R

C by the equivalence
of coderived categories Dco(X–tors) ' Dco(R–discr) induced by the equivalence of
abelian categories X–tors ' R–discr.

Example 5.10. For an ind-affine ind-Noetherian ℵ0-ind-scheme with a dualizing
complex D•, the construciton of the cotensor product functor �D• in Section 5.1
agrees with the one in [44, Section D.3], as one can see by comparing the two con-
structions in light of the discussion in Examples 3.8.

6. Ind-Schemes of Ind-Finite Type and the !-Tensor Product

Throughout this section, k denotes a fixed ground field. Given two ind-schemes X′

and X′′ (or two schemes X ′ and X ′′) over k, we denote the fibered product X′×Spec kX
′′

(or X ′×Spec kX
′′) simply by X′×kX

′′ (or X ′×kX
′′) for brevity. (See Sections 1.1–1.2

for a discussion of fibered products of ind-schemes.)
Let X be an ind-separated ind-scheme of ind-finite type over the field k. The

aim of this section is to describe the cotensor product functor �D• : Dco(X–tors) ×
Dco(X–tors) −→ Dco(X–tors), for a suitable choice of the dualizing complex D• on X,
as the derived !-restriction to the diagonal ∆X : X −→ X×k X of the external tensor
product on X×kX of the two given complexes of quasi-coherent torsion sheaves on X.

6.1. External tensor product of quasi-coherent sheaves. Let X ′ and X ′′ be two
schemes over k. Consider the Cartesian productX ′×kX

′′, and let p′ : X ′×kX
′′ −→ X ′

and p′′ : X ′ ×k X
′′ −→ X ′′ denote the natural projections.

LetM′ be a quasi-coherent sheaf overX ′ andM′ be a quasi-coherent sheaf overX ′′.
Then the external tensor product M′ �kM′′ of the quasi-coherent sheaves M′ and
M′′ is a quasi-coherent sheaf on X ′ ×k X

′′ defined by the formula

M′ �kM′′ = p′∗M′ ⊗OX′×kX′′
p′′∗M′′.

Lemma 6.1. Let F ′ be a flat quasi-coherent sheaf over X ′ and F ′′ be a flat quasi-
coherent sheaf over X ′′. Then F ′ �k F ′′ is a flat quasi-coherent sheaf over X ′×kX

′′.

Proof. Follows from immediately from the definition of the external tensor product
F ′�kF ′′ and the facts that the inverse images p′∗, p′′∗ and the tensor product⊗OX′×kX′′

preserve flatness of quasi-coherent sheaves. �
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Lemma 6.2. The external tensor product functor

�k : X ′–qcoh×X ′′–qcoh −−→ (X ′ ×k X
′′)–qcoh

is exact and preserves coproducts (hence all colimits) in each of its arguments.

Proof. The assertion is local in both X ′ and X ′′, so it reduces to the case of affine
schemes, for which it means the following. Let R′ and R′′ be two commutative
k-algebras. Let M ′ be an R′-module and M ′′ be an R′′-module. Then the functor
assigning to M ′ and M ′′ the (R′ ⊗k R

′′)-module

((R′ ⊗k R
′′)⊗R′ M ′)⊗R′⊗kR′′ ((R

′ ⊗k R
′′)⊗R′′ M ′′)

' (R′′ ⊗k M
′)⊗R′⊗kR′′ (R

′ ⊗k M
′′) 'M ′ ⊗k M

′′

is exact in each of the arguments. The preservation of coproducts is obvious. �

Lemma 6.3. Let f ′ : Y ′ −→ X ′ and f ′′ : Y ′′ −→ X ′′ be two morphisms of schemes
over k, and let f = f ′ ×k f

′′ : Y ′ ×k Y
′′ −→ X ′ ×k X

′′ be the induced morphism
of the Cartesian products. Let M′ be a quasi-coherent sheaf on X ′ and M′′ be a
quasi-coherent sheaf on X ′′. Then there is a natural isomorphism

f ∗(M′ �kM′′) ' f ′∗M′ �k f
′′∗M′′

of quasi-coherent sheaves on Y ′ ×k Y
′′.

Proof. Let p(s) : X ′ ×k X
′′ −→ X(s) and q(s) : Y ′ ×k Y

′′ −→ SpecY (s), s = 1, 2, be
the natural morphisms. Then one has

f ∗(M′ �kM′′) = f ∗(p′∗M′ ⊗OX′×kX′′
p′′∗M′′) ' f ∗p′∗M′ ⊗OY ′×kY ′′

f ∗p′′∗M′′

' q′∗f ′∗M′ ⊗OY ′×kY ′′
q′′∗f ′′∗M′′ = f ′∗M′ �k f

′′∗M′′,

since p′f = f ′q′ and p′′f = f ′′q′′. �

Lemma 6.4. Let f ′ : Y ′ −→ X ′ and f ′′ : Y ′′ −→ X ′′ be two affine morphisms of
schemes over k, and let f = f ′ ×k f

′′ : Y ′ ×k Y
′′ −→ X ′ ×k X

′′ be the induced
morphism of the Cartesian products. Let N ′ be a quasi-coherent sheaf on Y ′ and N ′′
be a quasi-coherent sheaf on Y ′′. Then there is a natural isomorphism

f∗(N ′ �k N ′′) ' f ′∗N ′ �k f
′′
∗N ′′

of quasi-coherent sheaves on X ′ ×k X
′′.

Proof. The assertion is essentially local in X ′ and X ′′, so it reduces to the case of
affine schemes, for which it means the following very tautological observation (cf.
the computation in the proof of Lemma 6.2). Let R′ −→ S ′ and R′′ −→ S ′′ be
two homomorphisms of commutative k-algebras. Let N ′ be an S ′-module and N ′′

be an S ′′-module; then N ′ ⊗k N
′′ is an (S ′ ⊗k S

′′)-module. Consider the underlying
R′-module of N ′ and the underlying R′′-module of N ′′; then the tensor product
N ′ ⊗k N

′′ acquires the structure of an (R′ ⊗k R
′′)-module. The claim is that the

latter (R′⊗kR
′′)-module structure N ′⊗kN

′′ underlies the former (S ′⊗k S
′′)-module

structure with respect to the ring homomorphism R′ ⊗k R
′′ −→ S ′ ⊗k S

′′ (i. e., the
two (R′ ⊗k R

′′)-module structures on N ′ ⊗k N
′′ coincide). �
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Lemma 6.5. Let Z ′ be a reasonable closed subscheme in a scheme X ′ over k and
Z ′ be a reasonable closed subscheme in a scheme Z ′′ over k. Then Z ′ ×k Z

′′ is a
reasonable closed subscheme in the scheme X ′ ×k X

′′.

Proof. To deduce the assertion from Lemma 2.1, decompose the closed immersion
Z ′ ×k Z

′′ −→ X ′ ×k X
′′ as Z ′ ×k Z

′′ −→ Z ′ ×k X
′′ −→ X ′ ×k X

′′ and notice that
Z ′ ×k Z

′′ = (Z ′ ×k X
′′)×X′′ Z ′′. �

Lemma 6.6. Let Z ′ be a reasonable closed subscheme in a scheme X ′ over k and
Z ′ be a reasonable closed subscheme in a scheme Z ′′ over k. Let i′ : Z ′ −→ X ′ and
i′′ : Z ′′ −→ X ′′ be the closed immersion morphisms, and let i = i′×k i

′′ : Z ′×kZ
′′ −→

X ′ ×k X
′′ be the induced closed immersion of the Cartesian products. Let M′ be a

quasi-coherent sheaf on X ′ and M′′ be a quasi-coherent sheaf on X ′′. Then there is
a natural isomorphism

i!(M′ �kM′′) ' i′!M′ �k i
′′!M′′

of quasi-coherent sheaves on Z ′ ×k Z
′′.

Proof. The assertion is essentially local in X ′ and X ′′, so it reduces to affine schemes,
for which it means the following (cf. the computation in the proof of Lemma 6.2).
Let R′ −→ S ′ and R′′ −→ S ′′ be two surjective homomorphisms of commutative
k-algebras (with finitely generated kernel ideals). Let M ′ be an R′-module and M ′′

be an R′′-module. Then there is a natural isomorphism of (S ′ ⊗k S
′′)-modules

HomR′⊗kR′′(S
′ ⊗k S

′′, M ′ ⊗k M
′′) ' HomR′(S

′,M ′)⊗k HomR′′(S
′′,M ′′).

To obtain the latter isomorphism, one can notice firstly that HomR′⊗kR′′(S
′ ⊗k R

′′,
M ′ ⊗k M

′′) ' HomR′(S
′, M ′ ⊗k M

′′) ' HomR′(S
′,M ′) ⊗k M

′′ and similarly
HomR′⊗kR′′(R

′ ⊗k S
′′, M ′ ⊗k M

′′) 'M ′ ⊗k HomR′′(S
′′,M ′′). �

Let M′• be a complex of quasi-coherent sheaves on X ′ and M′′• be a complex
of quasi-coherent sheaves on X ′′. Then the complex M′• �kM′′• of quasi-coherent
sheaves on X ′ ×k X

′′ is constructed by totalizing the bicomplex of external tensor
products using infinite coproducts along the diagonals.

Lemma 6.7. (a) LetM′• be a complex of quasi-coherent sheaves on a scheme X ′ and
M′′• be a complex of quasi-coherent sheaves on a scheme X ′′ over k. Assume that
the complex M′• is acyclic (in X ′–qcoh). Then the complex M′• �kM′′• is acyclic
(in (X ′ ×k X

′′)–qcoh).
(b) Let F ′• be a complex of flat quasi-coherent sheaves on a scheme X ′ and F ′′•

be a complex of flat quasi-coherent sheaves on a scheme X ′′ over k. Assume that
the complex F ′• is acyclic in X ′–flat. Then the complex F ′• �k F ′′• is acyclic in
(X ′ ×k X

′′)–flat.

Proof. Both the assertions (a) and (b) are local in X ′ and X ′′, so they reduce to the
case of affine schemes. Then part (a) follows from the fact that the tensor product of
an acyclic complex of k-vector spaces with an arbitrary complex of k-vector spaces
is an acyclic complex. Part (b) can be proved directly using the definition of the
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external tensor product of quasi-coherent sheaves as the tensor product of inverse
images with respect to the projection maps: the inverse image under any morphism
of schemes is exact as a functor between the exact categories of flat quasi-coherent
sheaves, and it remains to refer to Lemma 5.1(b). �

Let X be a scheme over k, and letM′ andM′′ be two quasi-coherent sheaves on X.
ThenM′�kM′′ is a quasi-coherent sheaf on X×kX. Denote by ∆X : X −→ X×kX
the diagonal morphism (defined by the property that its compositions with both the
projections X ×k X ⇒ X are the identity morphisms).

Lemma 6.8. For any two quasi-coherent sheavesM′ andM′′ on a scheme X over k,
there is a natural isomorphism

M′ ⊗OXM′′ ' ∆∗X(M′ �kM′′)

of quasi-coherent sheaves on X.

Proof. The assertion is essentially local in X, so it reduces to the case of an affine
scheme, for which it means the following. Let R be a commutative k-algebra, and let
M ′ and M ′′ be two R-modules. Then there is a natural isomorphism of R-modules

M ′ ⊗RM ′′ ' R⊗R⊗kR (M ′ ⊗k M
′′),

where the diagonal ring homomorphism R ⊗k R −→ R endows R with an
(R⊗k R)-module structure.

Alternatively, denoting by p′ and p′′ : X ×k X −→ X the natural projections, one
computes

∆∗X(M′ �kM′′) = ∆∗X(p′∗M′ ⊗OX×kX
p′′∗M′′)

' ∆∗Xp
′∗M′ ⊗OX ∆∗Xp

′′∗M′′ ' (p′∆X)∗M′ ⊗OX (p′′∆X)∗M′′ 'M′ ⊗OXM′′

using the fact that the tensor products of quasi-coherent sheaves are preserved by
the inverse images. �

6.2. External tensor product of pro-sheaves. Let X′ and X′′ be ind-schemes
over k. Let P′ be a pro-quasi-coherent pro-sheaf on X′ and P′′ be a pro-quasi-coherent
pro-sheaf on X′′. For every pair of closed subschemes Z ′ ⊂ X′ and Z ′′ ⊂ X′′ put
Q(Z′×kZ

′′) = P′(Z
′)�kP

′′(Z′′) ∈ (Z ′×kZ
′′)–qcoh. Then it follows from Lemma 6.3 that

the collection of quasi-coherent sheaves Q(Z′×kZ
′′) on the closed subschemes Z ′×kZ

′′ ⊂
X′ ×k X

′′ defines a pro-quasi-coherent pro-sheaf Q on the ind-scheme X′ ×k X
′′.

Put P′�kP
′′ = Q. This construction defines the functor of external tensor product

of pro-quasi-coherent pro-sheaves

(19) �k : X′–pro× X′′–pro −−→ (X′ ×k X
′′)–pro.

It is clear from Lemma 6.1 that the external tensor product of two flat pro-quasi-
coherent pro-sheaves is a flat pro-quasi-coherent pro-sheaf,

(20) �k : X′–flat× X′′–flat −−→ (X′ ×k X
′′)–flat.
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Furthermore, it follows from Lemma 6.2 that the functor (19) preserves colimits in
each of its argument, while the functor (20) is exact (as a functor between exact
categories) and preserves direct limits in each of its arguments.

Let P′• be a complex of pro-quasi-coherent pro-sheaves on X′ and P′′• be a complex
of pro-quasi-coherent pro-sheaves on X′′. Then the complex P′• �k P

′′• of pro-quasi-
coherent pro-sheaves on X′×kX

′′ is constructed by totalizing the bicomplex of external
tensor products using infinite coproducts along the diagonals.

Lemma 6.9. Let F′• be a complex of flat pro-quasi-coherent pro-sheaves on an ind-
scheme X′ and F′′• be a complex of flat pro-quasi-coherent pro-sheaves on an ind-
scheme X′′ over k. Assume that the complex F′• is acyclic in X′–flat. Then the
complex F′• �k F

′′• is acyclic in (X′ ×k X
′′)–flat.

Proof. The result of Lemma 4.13 reduces the question to the case of schemes (rather
than ind-schemes), for which we have Lemma 6.7(b). �

It follows from Lemma 6.9 that the external tensor product is well-defined as a
functor between the derived categories of flat pro-quasi-coherent pro-sheaves,

(21) �k : D(X′–flat)× D(X′′–flat) −−→ D((X′ ×k X
′′)–flat).

The next three lemmas do not depend on any flatness conditions.

Lemma 6.10. Let f ′ : Y′ −→ X′ and f ′′ : Y′′ −→ X′′ be two morphisms of ind-
schemes over k, and let f = f ′×kf

′′ : Y′×kY
′′ −→ X′×kX

′′ be the induced morphism
of the Cartesian products. Let P′ be a pro-quasi-coherent pro-sheaf on X′ and P′′ be
a pro-quasi-coherent pro-sheaf on X′′. Then there is a natural isomorphism

f ∗(P′ �k P
′′) ' f ′∗P′ �k f

′′∗P′′

of pro-quasi-coherent pro-sheaves on Y′ ×k Y
′′.

Proof. Follows immediately from the definition of the external tensor product of
pro-quasi-coherent pro-sheaves (above), the definition of the inverse image of pro-
quasi-coherent pro-sheaves (see Section 3.3), and Lemma 6.3. �

Lemma 6.11. Let f ′ : Y′ −→ X′ and f ′′ : Y′′ −→ X′′ be two affine morphisms of ind-
schemes over k, and let f = f ′×kf

′′ : Y′×kY
′′ −→ X′×kX

′′ be the induced morphism
of the Cartesian products. Let Q′ be a pro-quasi-coherent pro-sheaf on Y′ and Q′′ be
a pro-quasi-coherent pro-sheaf on Y′′. Then there is a natural isomorphism

f∗(Q
′ �k Q

′′) ' f ′∗Q
′ �k f

′′
∗Q
′′

of pro-quasi-coherent pro-sheaves on X′ ×k X
′′.

Proof. Follows from the definition of the external tensor product of pro-quasi-coherent
pro-sheaves, the definition of the direct image of pro-quasi-coherent pro-sheaves (see
Section 3.3), and Lemma 6.4. �

Let X be an ind-scheme over k, and let P′ and P′′ be two pro-quasi-coherent
pro-sheaves on X. Then P′ �k P′′ is a pro-quasi-coherent pro-sheaf on X ×k X.
Let ∆X : X −→ X×kX denote the diagonal morphism of ind-schemes (defined by the
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property that its compositions with both the projections X×kX⇒ X are the identity
morphisms).

Lemma 6.12. For any two pro-quasi-coherent pro-sheaves P′ and P′′ on an ind-
scheme X over k, there is a natural isomorphism

P′ ⊗X P′′ ' ∆∗X(P′ �k P
′′)

of pro-quasi-coherent pro-sheaves on X.

Proof. Follows from Lemma 6.8 and the definitions of the functors ⊗X (see Sec-
tion 3.1), ∆∗X (see Section 3.3), and �k. �

6.3. External tensor product of torsion sheaves. Let X′ = “lim−→”
γ′∈Γ′

X ′γ′ and

X′′ = “lim−→”
γ′′∈Γ′′

X ′′γ′′ be two reasonable ind-schemes over k, represented by inductive

systems of closed immersions of reasonable closed subschemes. Then X′ ×k X
′′ =

“lim−→”
(γ′,γ′′)∈Γ′×Γ′′

X ′γ′ ×k X
′′
γ′′ is a representation of the ind-scheme X′ ×k X

′′ by an in-

ductive system of closed immersions of reasonable closed subschemes (by Lemma 6.5).
Let M ′ be a quasi-coherent torsion sheaf on X′ and M ′′ be a quasi-coherent torsion

sheaf on X′′. For every pair of reasonable closed subschemes Z ′ ⊂ X′ and Z ′′ ⊂ X′′ put
L(Z′×kZ′′) = M ′

(Z′)�kM ′′
(Z′′) ∈ (Z ′×kZ

′′)–qcoh. Then it is clear from Lemma 6.6 that
the collection of quasi-coherent sheaves L(Z′×kZ′′) on the reasonable closed subschemes
Z ′ ×k Z

′′ ⊂ X′ ×k X
′′ defines a quasi-coherent torsion sheaf L on X′ ×k X

′′.
Put M ′ �k M ′′ = L . This construction defines the functor of external tensor

product of quasi-coherent torsion sheaves

(22) �k : X′–tors× X′′–tors −−→ (X′ ×k X
′′)–tors.

Lemma 6.13. Let f ′ : Y′ −→ X′ and f ′′ : Y′′ −→ X′′ be two affine morphisms of
reasonable ind-schemes over k, and let f = f ′ ×k f

′′ : Y′ ×k Y
′′ −→ X′ ×k X

′′ be
the induced morphism of the Cartesian products. Let N ′ be a quasi-coherent torsion
sheaf on Y′ and N ′′ be a quasi-coherent torsion sheaf on Y′′. Then there is a natural
isomorphism

f∗(N
′ �k N ′′) ' f ′∗N

′ �k f
′′
∗N

′′

of quasi-coherent torsion sheaves on X′ ×k X
′′.

Proof. Follows immediately from the definition of the external tensor product of
quasi-coherent torsion sheaves (above), the definition of the direct image of quasi-
coherent torsion sheaves (see Section 2.6), and Lemma 6.4. �

Similarly to the construction above, one defines the functor of external tensor
product of Γ-systems

(23) �k : (X′,Γ′)–syst× (X′,Γ′′)–syst −−→ (X′ ×k X
′′, Γ′ × Γ′′)–syst

by setting (M′ �k M′′)(γ′×γ′′) = M′(γ′) �k M′′(γ′′) for any Γ′-system M′ on X′, any

Γ′′-system M′′ on X′′, and any two indices γ′ ∈ Γ′, γ′′ ∈ Γ′′.
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Lemma 6.14. Let X′ and X′′ be reasonable ind-schemes over k. Then
(a) the functor of external tensor product �k : X′–tors×X′′–tors −→ (X′×kX

′′)–tors
preserves direct limits (and in particular, coproducts) in each of the arguments;

(b) the functors of external tensor product of Γ-systems (23) and of quasi-
coherent torsion sheaves (22) form a commutative square diagram with the functors
M(s) 7−→M(s)+ : (X(s),Γ(s))–syst −→ X(s)–tors, s = 1, 2, and L 7−→ L+ : (X′ ×k X

′′,
Γ′ × Γ′′)–syst −→ (X′ ×k X

′′)–tors.

Proof. Part (a) follows from the description of direct limits of quasi-coherent torsion
sheaves in Section 2.5 together with Lemma 6.2. Part (b) holds because the func-
tors (−)+ are constructed in terms of direct images (with respect to closed immersions
of reasonable closed subschemes into ind-schemes) and direct limits of quasi-coherent
torsion sheaves (see Section 2.7). The external tensor products commute with the
direct images by Lemma 6.13 and preserve direct limits by part (a). �

Lemma 6.15. For for any reasonable ind-schemes X′ and X′′ over k, the functor of
external tensor product �k : X′–tors×X′′–tors −→ (X′×k X

′′)–tors is exact in each of
its arguments.

Proof. Exactness of the functor of external tensor product of Γ-systems (23) fol-
lows immediately from Lemma 6.2. To deduce exactness of the functor of external
tensor product of quasi-coherent torsion sheaves (22), it remains to recall that the
functors (−)+ represent the abelian categories of quasi-coherent torsion sheaves as
quotient categories of the abelian categories of Γ-systems by some Serre subcategories
(see the proof of Proposition 2.8) and use Lemma 6.14(b). �

Lemma 6.16. Let X′ and X′′ be reasonable ind-schemes over k, and let f ′ : Y′ −→
X′ and f ′′ : Y′′ −→ X′′ be morphisms of ind-schemes which are “representable by
schemes”. Let f = f ′ ×k f

′′ : Y′ ×k Y
′′ −→ X′ ×k X

′′ be the induced morphism of the
Cartesian products. Let M ′ be a quasi-coherent torsion sheaf on X′ and M ′′ be a
quasi-coherent torsion sheaf on X′′. Then there is a natural isomorphism

f ∗(M ′ �k M ′′) ' f ′∗M ′ �k f
′′∗M ′′

of quasi-coherent torsion sheaves on Y′ ×k Y
′′.

Proof. Follows from the definition of the inverse image of quasi-coherent torsion
sheaves (see Section 2.8) and Lemmas 6.4 and 6.14(b). �

Let us say that a closed immersion of ind-schemes i : Z −→ X is reasonable if,
for any scheme T and a morphism of schemes T −→ X, the morphism of schemes
Z ×X T −→ T is the closed immersion of a reasonable closed subscheme in T . If
X = “lim−→”

γ∈Γ
Xγ is a representation of X by an inductive system of closed immersions

of schemes, then a closed immersion of ind-schemes i : Z −→ X is reasonable if and
only if, for every γ ∈ Γ, the fibered product Z×XXγ is a reasonable closed subscheme
in Xγ (use Lemma 2.1(a)). It is clear from Lemma 6.5 that the Cartesian product of
reasonable closed immersions of ind-schemes over k is a reasonable closed immersion.
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Lemma 6.17. Let i′ : Z′ −→ X′ and i′′ : Z′′ −→ X′′ be reasonable closed immersions
of reasonable ind-schemes over k, and let i = i′ ×k i

′′ : Z′ ×k Z
′′ −→ X′ ×k X

′′ be the
induced reasonable closed immersion of the Cartesian products. Let M ′ be a quasi-
coherent torsion sheaf on X′ and M ′′ be a quasi-coherent torsion sheaf on X′′. Then
there is a natural isomorphism

i!(M ′ �k M ′′) ' i′!M ′ �k i
′′!M ′′

of quasi-coherent torsion sheaves on Z′ ×k Z
′′.

Proof. Follows immediately from the definition of the external tensor product of
quasi-coherent torsion sheaves, the definition of the functor i! for a closed immersion
of ind-schemes i (see Section 2.8), and Lemma 6.6. �

Let M ′• be a complex of quasi-coherent torsion sheaves on X′ and M ′′• be a
complex of quasi-coherent torsion sheaves on X′′. Then the complex M ′• �k M ′′• of
quasi-coherent torsion sheaves on X′×kX

′′ is constructed by totalizing the bicomplex
of external tensor products using infinite coproducts along the diagonals.

Lemma 6.18. Let M ′• be a complex of quasi-coherent torsion sheaves on a reason-
able ind-scheme X′ and M ′′• be a complex of quasi-coherent torsion sheaves on a
reasonable ind-scheme X′′ over k. Assume that the complex M ′• is coacyclic (as a
complex in X′–tors). Then the complex M ′• �k M ′′• is coacyclic (as a complex in
(X′ ×k X

′′)–tors).

Proof. Follows from Lemmas 6.14(a) and 6.15. �

It is clear from Lemma 6.18 that the external tensor product is well-defined as a
functor between the coderived categories of quasi-coherent torsion sheaves,

(24) �k : Dco(X′–tors)× Dco(X′′–tors) −−→ Dco((X′ ×k X
′′)–tors).

6.4. Derived restriction with supports. Let X be an ind-Noetherian ind-scheme
and i : Z −→ X be a closed immersion of ind-schemes (then Z is also an ind-Noetherian
ind-scheme). The functor i! : X–tors −→ Z–tors was defined in Section 2.8.

According to Corollary 4.18, the inclusion of the full subcategory of injective quasi-
coherent torsion sheaves X–torsinj −→ X–tors induces a triangulated equivalence
K(X–torsinj) ' Dco(X–tors). The right derived functor

Ri! : Dco(X–tors) −−→ Dco(Z–tors)

is constructed by applying the functor i! to complexes of injective quasi-coherent
torsion sheaves on X.

Notice that the right derived functor Ri! preserves coproducts. Indeed, the
underived functor i! : X–tors −→ Z–tors preserves coproducts for any reasonable
closed immersion of reasonable ind-schemes i : Z −→ X; and coproducts of injective
quasi-coherent torsion sheaves are injective on an ind-Noetherian ind-scheme (by
Lemma 4.16 and Proposition 4.17).

Let X′ and X′′ be ind-schemes of ind-finite type over k (then X′×kX
′′ is also an ind-

scheme of ind-finite type). Let i′ : Z′ −→ X′ and i′′ : Z′′ −→ X′′ be closed immersions
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of ind-schemes; denote by i = i′ ×k i
′′ : Z′ ×k Z

′′ −→ X′ ×k X
′′ the induced closed

immersion of the Cartesian products. The aim of this Section 6.4 is to prove the
following proposition (for another comparable result, see Proposition 10.14 below).

Proposition 6.19. For any complexes of quasi-coherent torsion sheaves M ′• on X′

and M ′′• on X′′, there is a natural isomorphism

Ri!(M ′• �k M ′′•) ' Ri′!(M ′•) �k Ri′′!(M ′′•)

in the coderived category Dco((Z′ ×k Z
′′)–tors).

The proof of Proposition 6.19 requires some work because the external tensor
product of two injective quasi-coherent (torsion) sheaves is usually not an injective
quasi-coherent (torsion) sheaf. In fact, the assertion of the proposition follows almost
immediately from the next lemma (together with Lemma 6.17).

Lemma 6.20. Let J ′• be a complex of injective quasi-coherent torsion sheaves on
X′ and J ′′• be a complex of injective quasi-coherent torsion sheaves on X′′. Let
r : J ′•�kJ ′′• −→ K • be a morphism of complexes of quasi-coherent torsion sheaves
on X′×kX

′′ such that K • is a complex of injective quasi-coherent torsion sheaves and
the cone of r is a coacyclic complex of quasi-coherent torsion sheaves on X′ ×k X

′′.
Then the induced morphism of complexes of quasi-coherent torsion sheaves on Z′×kZ

′′

i!(r) : i!(J ′• �k J ′′•) −−→ i!K •

has coacyclic cone.

The proof of Lemma 6.20 will be given below near the end of Section 6.4.

Lemma 6.21. Let R′ and R′′ be Noetherian commutative k-algebras, M ′ be a finitely
generated R′-module, M ′′ be a finitely generated R′′-module, N ′ be an R′-module, and
N ′′ be an R′′-module. Then for every n ≥ 0 there is a natural isomorphism of k-vector
spaces

ExtnR′⊗kR′′
(M ′ ⊗k M

′′, N ′ ⊗k N
′′) '

⊕
p+q=n

ExtpR′(M
′, N ′)⊗k ExtqR′′(M

′′, N ′′).

In particular, for any injective R′-module J ′ and any injective R′′-module J ′′ one has
ExtnR′⊗kR′′

(M ′ ⊗k M
′′, J ′ ⊗k J

′′) = 0 for all n > 0.

Proof. The assumption of commutativity of the rings R′ and R′′ is actually not
needed. One starts with the observation that, for any finitely generated projective
R′-module P ′ and any finitely generated projective R′′-module P ′′ there is a natural
isomorphism of Hom spaces

HomR′⊗kR′′(P
′ ⊗k P

′′, N ′ ⊗k N
′′) ' HomR′(P

′, N ′)⊗k HomR′′(P
′′, N ′′).

Now let P ′• −→M ′ be a resolution of M ′ by finitely generated projective R′-modules
and P ′′• −→ M ′′ be a resolution of M ′′ by finitely generated projective R′′-modules.
Then the tensor product of two complexes P ′• ⊗k P

′′
• is a resolution of M ′ ⊗k M

′′ by
(finitely generated) projective (R′ ⊗k R

′′)-modules. It remains to compute

HomR′⊗kR′′(P
′
• ⊗k P

′′
• , N

′ ⊗k N
′′) ' HomR′(P

′
•, N

′)⊗k HomR′′(P
′′
• , N

′′)
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and recall that for any two complexes of k-vector spaces C ′• and C ′′• one has
Hn(C ′• ⊗k C

′′•) '
⊕

p+q=nH
p(C ′•)⊗k H

q(C ′′•). �

Lemma 6.22. Let X ′ and X ′′ be schemes of finite type over k, and let i′ : Z ′ −→ X ′

and i′′ : Z ′′ −→ X ′′ be closed immersions of schemes. Denote by i : Z ′×kZ
′′ −→ X ′×k

X ′′ the induced closed immersion of the Cartesian products. Let J ′ be an injective
quasi-coherent sheaf on X ′ and J ′′ be an injective quasi-coherent sheaf on X ′′. Let
J ′ �k J ′′ −→ K• be an injective resolution of the quasi-coherent sheaf J ′ �k J ′′ on
the scheme X ′ ×k X

′′. Then one has

H0(i!K•) ' i′!J ′ �k i
′′!J ′′ and Hn(i!K•) = 0 for n > 0.

Proof. To compute H0(i!K•), it suffices to observe that the functor i! is left exact (as
a right adjoint), so H0(i!K•) ' i!(J ′ �k J ′′) ' i′!J ′ �k i

′′!J ′′ by Lemma 6.6. The
vanishing assertion in local in X ′ and X ′′ (notice that all the schemes involved are
Noetherian, so injectivity of a quasi-coherent sheaf is a local property), so it reduces
to the case of affine schemes, for which it means the following.

Let R′ −→ S ′ and R′′ −→ S ′′ be surjective homomorphisms of finitely generated
commutative k-algebras, and let J ′ and J ′′ be injective modules over R′ and R′′,
respectively. Let K• be an injective resolution of the (R′ ⊗k R

′′)-module J ′ ⊗k J
′′.

Then the complex HomR′⊗kR′′(S
′⊗kS

′′, K•) has vanishing cohomology in the positive
cohomological degrees. This is a particular case of Lemma 6.21. �

Lemma 6.23. Let X′ and X′′ be ind-schemes of ind-finite type over k, and let Z ′ ⊂ X′

and Z ′′ ⊂ X′′ be closed subschemes with the closed immersion morphisms Z ′ −→ X′

and Z ′′ −→ X′′. Denote by i : Z ′×kZ
′′ −→ X′×kX

′′ the induced closed immersion of
the Cartesian products. Let J ′ be an injective quasi-coherent torsion sheaf on X′ and
J ′′ be an injective quasi-coherent torsion sheaf on X′′. Let J ′�kJ ′′ −→ K • be an
injective resolution of the quasi-coherent torsion sheaf J ′ �k J ′′ on the ind-scheme
X′ ×k X

′′. Then one has

H0(i!K •) ' i′!J ′ �k i
′′!J ′′ and Hn(i!K •) = 0 for n > 0.

Proof. The computation of H0 is similar to the one in Lemma 6.22 (use Lemma 6.17).
To prove the higher cohomology vanishing, choose inductive systems of closed im-
mersions of schemes of finite type over k representing the ind-schemes X′ and X′′,
and consider the related inductive system representing the ind-scheme X′ ×k X

′′, as
in the beginning of Section 6.3. Put X = X′ ×k X

′′ and Γ = Γ′ × Γ′′. For any biindex
γ = (γ′, γ′′) ∈ Γ, put Xγ = X ′γ′×X ′′γ′′ . We can always assume that there exist γ′0 ∈ Γ′

and γ′′0 ∈ Γ′′ such as Z ′ = X ′γ′0
⊂ X′ and Z ′′ = X ′′γ′′0

⊂ X′′.

Our aim is to show that the exact sequence of quasi-coherent torsion sheaves 0 −→
J ′ �k J ′′ −→ K 0 −→ K 1 −→ K 2 −→ · · · on X remains exact after applying the
functor M 7−→ M |Γ : X–tors −→ (X,Γ)–syst. Notice that, by the definitions of the
external tensor products, we have (J ′ �k J ′′)|Γ = J ′|Γ′ �k J ′′|Γ′′ .

Denote by M1 the cokernel of the morphism of Γ-systems (J ′�kJ ′′)|Γ −→ K 0|Γ.
Let γ = (γ′, γ′′) ≤ δ = (δ′, δ′′) be two biindices (where γ′ ≤ δ′ ∈ Γ′ and γ′′ ≤ δ′′ ∈ Γ′′).
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Denote the related transition maps in the inductive systems by i′γ′δ′ : X
′
γ′ −→ X ′δ′ and

i′′γ′′δ′′ : X
′′
γ′′ −→ X ′′δ′′ , and put iγδ = i′γ′δ′ ×k i

′′
γ′′δ′′ : Xγ −→ Xδ.

By Proposition 2.17(a), the quasi-coherent sheaves K n
(Xδ)

on the scheme Xδ are in-

jective for all n ≥ 0. By Lemma 6.22, the short exact sequence 0 −→ (J ′�kJ ′′)(Xδ)

−→ K 0
(Xδ)
−→ M1

(δ) −→ 0 of quasi-coherent sheaves on Xδ remains exact after ap-

plying the functor i!γδ. Hence the structure map M1
(γ) −→ i!γδM1

(δ) in the Γ-system

M1 is an isomorphism (of quasi-coherent sheaves on Xγ).
As this holds for all γ ≤ δ ∈ Γ, we can conclude that the collection of quasi-

coherent sheaves M 1
(Xγ) = M1

(γ) defines a quasi-coherent torsion sheaf M 1 on X.

So we have M1 = M 1|Γ and M 1 = M1+. In other words, this means that the
adjunction morphism M1 −→ M1+|Γ is an isomorphism of Γ-systems. Notice that
the quasi-coherent torsion sheaf M1+ on X is, by the definition, the cokernel of the
monomorphism of quasi-coherent torsion sheaves J ′�kJ ′′ −→ K 0. We have shown
that the short exact sequence of quasi-coherent torsion sheaves 0 −→J ′�k J ′′ −→
K 0 −→M1+ −→ 0 on X remains exact after applying the functor M 7−→M |Γ.

Denote by M2 the cokernel of the morphism of Γ-systems K 0|Γ −→ K 1|Γ; as
we have seen, this is the same thing as the cokernel of the morphism of Γ-systems
M1 −→ K 1|Γ. By Lemma 6.22, the exact sequence 0 −→ (J ′ �k J ′′)(Xδ) −→
K 0

(Xδ)
−→ K 1

(Xδ)
−→M2

(δ) −→ 0 of quasi-coherent sheaves on Xδ remains exact after

applying the functor i!γδ. Hence the structure map M2
(γ) −→ i!γδM2

(δ) in the Γ-system

M2 is an isomorphism. As this holds for all γ ≤ δ ∈ Γ, we can conclude that the
adjunction morphism M2 −→M2+|Γ is an isomorphism of Γ-systems.

Notice that the quasi-coherent torsion sheaf M2+ on X is, by the definition, the
cokernel of the morphism of quasi-coherent torsion sheaves K 0 −→ K 1. We have
shown that the exact sequence of quasi-coherent torsion sheaves 0 −→ J ′ �k J ′′

−→ K 0 −→ K 1 −→ M2+ −→ 0 on X remains exact after applying the functor
M 7−→M |Γ. Proceeding in this way, we prove the desired preservation of exactness
by induction in the cohomological degree. �

Lemma 6.24. Let X′ and X′′ be ind-schemes of ind-finite type over k, and let
i′ : Z′ −→ X′ and i′′ : Z′′ −→ X′′ be closed immersions of ind-schemes. Denote by
i : Z′ ×k Z

′′ −→ X′ ×k X
′′ the induced closed immersion of the Cartesian products.

Let J ′ be an injective quasi-coherent torsion sheaf on X′ and J ′′ be an injective
quasi-coherent torsion sheaf on X′′. Let J ′�kJ ′′ −→ K • be an injective resolution
of the quasi-coherent torsion sheaf J ′�k J ′′ on the ind-scheme X′×kX

′′. Then one
has

H0(i!K •) ' i′!J ′ �k i
′′!J ′′ and Hn(i!K •) = 0 for n > 0.

Proof. The computation of H0 is similar to the one in Lemmas 6.22 and 6.23. The
functor i! is left exact as a right adjoint, and it remains to use Lemma 6.17. To
prove the vanishing assertion, choose closed subschemes Z ′ ⊂ Z′ and Z ′′ ⊂ Z′′ with
the closed immersion morphisms k′ : Z ′ −→ Z′ and k′′ : Z ′′ −→ Z′′. Denote by k =
k′ ×k k

′′ : Z ′ ×k Z
′′ −→ Z′ ×k Z′′ the induced closed immersion of the Cartesian
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products. Then by Lemma 6.23 we have Hn(k!i!K •) = 0 for n > 0, and it follows
that Hn(i!K •) = 0 for n > 0 as well. �

Lemma 6.25. In the notation of Lemma 6.24, let (J ′
θ)θ∈Θ be a family of injective

quasi-coherent torsion sheaves on X′ and (J ′′
θ )θ∈Θ be a family of injective quasi-

coherent torsion sheaves on X′′, indexed by the same set Θ. Let
∐

θ∈Θ J ′
θ�kJ ′′

θ −→
K • be an injective resolution of the coproduct of quasi-coherent torsion sheaves J ′

θ�k
J ′′

θ on the ind-scheme X′ ×k X
′′. Then one has

H0(i!K •) '
∐

θ∈Θ
i′!J ′

θ �k i
′′!J ′′

θ and Hn(i!K •) = 0 for n > 0.

Proof. Essentially, the claim is that the right derived functor

Ri! : Dco((X′ ×k X
′′)–tors) −−→ Dco((Z′ ×k Z

′′)–tors)

preserves coproducts (as mentioned above in the beginning of Section 6.4). This
reduces the question to Lemma 6.24. �

Proof of Lemma 6.20. Given two complexes J ′• and J ′′•, a related complex K •

is defined uniquely up to a homotopy equivalence (by Proposition 4.15(a)); so it
suffices to prove the assertion of the lemma for one specific choice of the complex K •.
We will use the complex K • provided by the construction on which the proof of
Proposition 4.15(b) is based.

Let J ′•�kJ ′′• −→ L 0,• be a monomorphism of complexes in (X′×kX
′′)–tors such

that L 0,• is a complex of injective quasi-coherent torsion sheaves. Denote by M 1,• the
cokernel of this morphism of complexes, and let M 1,• −→ L 1,• be a monomorphism
of complexes in which L 1,• is a complex of injectives. Proceeding in this way, we
construct a bounded below complex of complexes of injective quasi-coherent torsion
sheaves L •,• together with a quasi-isomorphism J ′•�k J ′′• −→ L •,• of complexes
of complexes in (X′ ×k X

′′)–tors. Let us emphasize that the notation J ′• �k J ′′•

here stands for the total complex of the bicomplex of tensor products, while L •,•

is a bicomplex (not totalized yet). In every cohomological degree n, the complex
L •,n is an injective resolution of the quasi-coherent torsion sheaf (J ′• �k J ′′•)n.
The complex K • is then constructed by totalizing the bicomplex L •,• using infinite
coproducts along the diagonals.

Recall that the functor i! : (X′×kX
′′)–tors −→ (Z′×kZ

′′)–tors preserves coproducts.
In every cohomological degree n, applying i! to the complex 0 −→ (J ′•�kJ ′′•)n −→
L 0,n −→ L 1,n −→ · · · produces an acyclic complex in (Z′×kZ

′′)–tors by Lemma 6.25.
It remains to point out that the coproduct totalization of an acyclic bounded below
complex of complexes is a coacyclic complex [40, Lemma 2.1]. �

Proof of Proposition 6.19. It is relevant that the external tensor product is well-
defined as a functor between the coderived categories (by Lemma 6.18). Choose
a complex of injective quasi-coherent torsion sheaves J ′• on X′ and a complex
of injective quasi-coherent torsion sheaves J ′′• on X′′ together with morphisms
M ′• −→ J ′• and M ′′• −→ J ′′• with coacyclic cones. Then it remains to ap-
ply Lemma 6.20 and take Lemma 6.17 into account. �
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6.5. Rigid dualizing complexes. The notion of a rigid dualizing complex was
introduced originally in [64, Definition 8.1] and studied in [66, 4] and many other
papers (see also [65] and [59]). Without going into details, we will formulate a simple
definition of a rigid dualizing complex on an ind-scheme of ind-finite type over a
field k in the form suitable for our purposes.

Lemma 6.26. Let X′ and X′′ be ind-semi-separated ind-schemes of ind-finite type
over k. Let D ′• be a dualizing complex on X′ and D ′′• be a dualizing complex on X′′.
Let E • be a complex of injective quasi-coherent torsion sheaves on X′×k X

′′ endowed
with a morphism of complexes D ′• �k D ′′• −→ E • with coacyclic cone. Then E • is a
dualizing complex on X′ ×k X

′′.

Proof. Proposition 6.19 (for closed subschemes Z ′ ⊂ X′ and Z ′′ ⊂ X′′) reduces the
question to schemes, for which it is straightforward. �

Let X be an ind-scheme over k. Denote by ∆: X −→ X×kX the diagonal morphism.
Then the ind-scheme X is ind-separated (as defined in Section 4.2) if and only if the
morphism ∆ is a closed immersion of ind-schemes.

Let X be an ind-separated ind-scheme of ind-finite type over k. An object E • ∈
Dco(X–tors) in the coderived category of quasi-coherent torsion sheaves on X is said
to be rigid if it is endowed with an isomorphism E • ' R∆!(E • �k E •) (called the
rigidifying isomorphism) in the coderived category Dco(X–tors). A dualizing complex
D• ∈ C(X–torsinj) on X is said to be rigid if it is rigid (i. e., has been endowed with
a rigidifying isomorphism) as an object of Dco(X–tors).

Our aim is to explain how to produce a rigid dualizing complex on an ℵ0-ind-
scheme from rigid dualizing complexes on schemes, in the spirit of Example 4.7. For
this purpose, we need to start with some preliminary work.

Lemma 6.27. Let X = “lim−→”
γ∈Γ

Xγ be an ind-Noetherian ind-scheme represented

by an inductive system of closed immersions of (Noetherian) schemes. Denote by
iγ : Xγ −→ X the closed immersion morphisms. Let f : M • −→ N • be a mor-
phism in the coderived category Dco(X–tors). Then the morphism f is an isomor-
phism if and only if the morphism Ri!γ(f) : Ri!γM • −→ Ri!γN • is an isomorphism
in Dco(Xγ–qcoh) for every γ ∈ Γ.

Proof. It suffices to show that Ri!γL • = 0 for L • ∈ Dco(X–tors) and all γ ∈ Γ
implies L • = 0 in Dco(X–tors). Indeed, by Corollary 4.18, there exists a complex of
injective quasi-coherent torsion sheaves J • ∈ K(X–torsinj) such that L • ' J • in
Dco(X–tors). Then it remains to apply Lemma 4.21. �

Proposition 6.28. Let X = “lim−→”(X0 → X1 → X2 → · · · ) be an ind-Noetherian
ℵ0-ind-scheme represented by an inductive system of closed immersions of (Noether-
ian) schemes indexed by the poset of nonnegative integers. Let in : Xn −→ Xn+1 and
kn : Xn −→ X, n ≥ 0, denote the closed immersion morphisms. Let M • and N • ∈
Dco(X–tors) be two objects in the coderived category of quasi-coherent torsion sheaves.
Suppose that, for every n ≥ 0, we are given a morphism fn : Rk!

nM
• −→ Rk!

nN
• in
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Dco(Xn–qcoh) such that, for every n ≥ 0, the morphisms fn and Ri!n(fn+1) form a
commutative square diagram with the natural isomorphisms Rk!

nM
• ' RinRk!

n+1M
•

and Rk!
nN

• ' RinRk!
n+1N

•. Then
(a) there exists a morphism f : M • −→ N • in Dco(X–tors) such that fn = Rk!

n(f)
for every n ≥ 0;

(b) assuming additionally that HomDco(Xn–qcoh)(Rk!
nM

•,Rk!
nN

•[−1]) = 0 for all
n ≥ 0, the morphism f with these properties is also unique.

The proof of the proposition is based on the next lemma.

Lemma 6.29. In the assumptions and notation of the proposition, let L • ∈
K(X–tors) be a complex of quasi-coherent torsion sheaves and J • ∈ K(X–torsinj) be
a complex of injective quasi-coherent torsion sheaves on X. Suppose that, for every
n ≥ 0, we are given a morphism gn : k!

nL
• −→ k!

nJ
• in K(Xn–qcoh) such that, for

every n ≥ 0, the morphisms gn and i!n(gn+1) form a commutative square diagram
with the natural isomorphisms k!

nL
• ' i!nk

!
n+1L

• and k!
nJ

• ' ink
!
n+1J

•. Then
(a) there exists a morphism g : L • −→J • in K(X–tors) such that gn = k!

n(g) in
K(Xn–qcoh) for every n ≥ 0;

(b) assuming additionally that HomK(Xn–qcoh)(k
!
nL

•, k!
nJ

•[−1]) = 0 for all n ≥ 0,
the morphism g with these properties is also unique.

Proof. Let L • ∈ C(X–tors) and J • ∈ C(X–torsinj) be our two complexes. The lemma
claims that, given a system of morphisms gn : k!

nL
• −→ k!

nJ
• which is compatible

up to chain homotopy, one can replace every morphism gn by a homotopic morphism
fn : k!

nL
• −→ k!

nJ
• in C(Xn–qcoh) such that the morphisms fn are compatible with

each other in the strict sense, i. e., the square diagrams become commutative in the
abelian category of complexes C(Xn–qcoh).

Part (a): proceeding by induction in n ≥ 0, suppose that we have constructed
chain homotopies hm : k!

mL • −→ k!
mJ •[−1] for all m ≤ n such that the morphisms

fm = gm + d(hm) satisfy fm = i!m(fm+1) in C(Xm–qcoh) for all m < n. For n = 0
(the induction base), it suffices to take h0 = 0. Let us construct hn+1.

By assumption, we have fn = i!ngn+1 in K(Xn–qcoh); in other words, there ex-
ists a chain homotopy un : k!

nL
• −→ k!

nJ
•[−1] such that fn = i!ngn+1 + d(un) in

C(Xn–qcoh). Consider the map in∗un : in∗k
!
nL

• −→ in∗k
!
nJ

•[−1] and compose it
with the adjunction morphism in∗k

!
nJ

•[−1] = in∗i
!
nk

!
n+1J

•[−1] −→ k!
n+1J

•[−1].
The resulting map tn : in∗k

!
nL

• −→ k!
n+1J

•[−1] is a morphism of graded objects in
Xn+1–qcoh, where the target k!

n+1J
•[−1] is a graded object in Xn+1–qcohinj.

k!
n+1L

• gn+1
//

hn+1
4<
k!
n+1J

•

in∗k
!
nL

• in∗fn
//

tn

<D

?�

OO

in∗k
!
nJ

•
?�

OO
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Now the adjunction morphism in∗k
!
nL

• = in∗i
!
nk

!
n+1L

• −→ k!
n+1L

• is a monomor-
phism, so it makes in∗k

!
nL

• a graded subobject (in fact, a subcomplex) in k!
n+1L

•.
By injectivity of k!

n+1J
•, the map tn can be extended to a morphism of graded

objects hn+1 : k!
n+1L

• −→ k!
n+1J

•[−1] in Xn+1–qcoh, which provides the desired
chain homotopy for which the morphisms of complexes fn+1 = gn+1 + d(hn+1) :
k!
n+1L

• −→ k!
n+1J

• satisfy fn = i!nfn+1 in C(Xn–qcoh).
The proof part (b) is similar. Suppose that we are given a morphism g : L • −→

J • in K(X–tors) such that k!
n(g) = 0 in the homotopy category K(Xn–qcoh) for

every n ≥ 0. Then there exist chain homotopies hn : k!
nL

• −→ k!
nJ

•[−1] such
that k!

n(g) = d(hn) in the category of complexes C(Xn–qcoh). The difference hn −
i!n(hn+1) satisfies d(hn − i!n(hn+1)) = d(hn) − i!n(d(hn+1)) = k!

n(g) − i!nk!
n+1(g) = 0;

so hn − i!n(hn+1) is a morphism k!
nL

• −→ k!
nJ

•[−1] in the category of complexes
C(Xn–qcoh). By the assumption of part (b), this morphism must be homotopic to
zero. So the chain homotopies hn “agree with each other up to a chain homotopy of
the next degree”.

Arguing as in part (a) and using the assumption that k!
n+1J

• are complexes of
injective quasi-coherent sheaves onXn+1, one proceeds by induction in n, constructing
chain homotopies rn+1 : k!

n+1L
• −→ k!

n+1J
•[−2] such that the chain homotopies

qn+1 = hn+1 + d(rn+1) satisfy qn = i!nqn+1 in C(Xn–qcoh) for all n ≥ 0. The point
is that the discrepancy between qn and i!nhn+1 can be lifted from a chain homotopy
k!
nL

• −→ k!
nJ

•[−2] to a chain homotopy k!
n+1L

• −→ k!
n+1J

•[−2]. �

Proof of Proposition 6.28. Use Corollary 4.18 in order to find two complexes of in-
jective quasi-coherent torsion sheaves L • and J • on X together with a morphism
M • −→ L • and N • −→ J • with coacyclic cones. Furthermore, notice that, for
any scheme X and any complexes L• ∈ K(X–qcohinj) and J • ∈ K(X–qcohinj), the
natural morphism of Hom groups HomK(X–qcoh)(L•,J •) −→ HomDco(X–qcoh)(L•,J •)
is an isomorphism. The latter assertion holds by Proposition 4.15(a) (a slightly more
precise version of Proposition 4.15(a), which is also valid in any abelian/exact cate-
gory with exact coproducts, tells that the same holds for any L• ∈ K(X–qcoh); but we
still need L • ∈ K(X–torsinj) in order to have Rk!

nL
• = k!

nL
•). These observations

reduce the assertions of the proposition to those of Lemma 6.29. �

Examples 6.30. (0) We refer to Remark 5.3(3) for the discussion of the extraordi-
nary inverse image functors and the notation f+ : D+(X–qcoh) −→ D+(Y –qcoh) for
a morphism of finite type between Noetherian schemes f : Y −→ X.

The functor f+ commutes with external tensor products. In particular, given a
morphism of finite type p : X −→ Spec k, consider the morphism p×k p : X×kX −→
Spec k, and denote simply by k the quasi-coherent sheaf on Spec k corresponding
to the k-vector space k. Then there is a natural isomorphism (p ×k p)

+(k) '
p+(k)�k p

+(k) in D+((X ×kX)–qcoh). In fact, p+(k) is a complex of quasi-coherent
sheaves with bounded cohomology sheaves, which are coherent sheaves on X, and
the complex p+(k) also has finite injective dimension.
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Assume that the scheme X is separated, and choose a bounded complex D• ∈
Kb(X–qcohinj) of injective quasi-coherent sheaves on X quasi-isomorphic to p+(k).
Then D• is a dualizing complex on X. Moreover, D•n is a rigid dualizing complex,
i. e., denoting the diagonal morphism by ∆X : X −→ X ×k X, there is a natural
isomorphism D• ' R∆!

X(D• �k D•) in Db(X–qcoh) ⊂ D+(X–qcoh) ⊂ Dco(X–qcoh).

(1) Let X = “lim−→”(X0 → X1 → X2 → · · · ) be an ind-separated ℵ0-ind-scheme
of ind-finite type over k, represented by an inductive system of closed immersions of
schemes indexed by the nonnegative integers. For every n ≥ 0, denote by pn : Xn −→
Spec k the structure morphism of the scheme Xn over k, and let D•n ∈ Kb(Xn–qcohinj)
denote a bounded complex of injective quasi-coherent sheaves on Xn quasi-isomorphic
to p+

n (k). Then D•n is a rigid dualizing complex on Xn.
In the above notation in : Xn −→ Xn+1 for the transition morphisms in the induc-

tive system of schemes, there are also natural isomorphisms p+
n (k) ' Ri!np+

n+1(k)
in D+(Xn–qcoh), which lead to natural homotopy equivalences D•n ' i!nD•n+1 in
Kb(Xn–qcohinj). Using the construction of Example 4.7, we produce a dualizing com-

plex D• ∈ K(X–torsinj) together with natural homotopy equivalences D•n ' k!
nD

•

(where kn : Xn −→ X are the closed immersions).

(2) For every n ≥ 0, choose a bounded complex of injective quasi-coherent sheaves
E•n on Xn ×k Xn quasi-isomorphic to (pn ×k pn)+(k). So E•n is a dualizing complex
on Xn ×k Xn naturally isomorphic to the complex D•n �k D•n in the derived category
Db((Xn ×k Xn)–qcoh). We also have natural homotopy equivalences ∆!

n(E•n) ' D•n
in Kb(Xn–qcohinj) (where ∆n : Xn −→ Xn ×k Xn is the diagonal morphism) and

E•n ' (in ×k in)!E•n+1 in Kb((Xn ×k Xn)–qcohinj).
Using the construction of Example 4.7, we can produce a dualizing complex E • ∈

K((X×k X)–torsinj) together with natural homotopy equivalences E•n ' (kn×k kn)!E •.
Now Lemma 6.29(a) allows to extend these data to a morphism D• −→ ∆!E • in
K(X–torsinj) (where ∆: X −→ X×kX is the diagonal). Using the same lemma, we also
obtain a morphism D•�k D• −→ E • in K((X×k X)–tors). Moreover, Lemma 6.29(b)
combined with Lemma 4.12 show that the relevant morphisms in the homotopy cat-
egories of quasi-coherent torsion sheaves are uniquely defined.

Alternatively, one can use Proposition 6.28(a) together with Proposition 6.19. This
allows to avoid mentioning the specific complexes E•n and E •, constructing directly
a morphism D• −→ R∆!(D• �k D•) in the coderived category Dco(X–tors) instead.
This morphism in the coderived category is uniquely defined by Proposition 6.28(b)
combined with Lemma 4.12.

By Lemma 6.27, both the morphisms D• −→ ∆!E • and D• �k D• −→ E • are iso-
morphisms in the respective coderived categories Dco(X–tors) and Dco((X×kX)–tors).
Thus D• ∈ K(X–torsinj) is a rigid dualizing complex on X.

6.6. Covariant duality commutes with external tensor products. Let X be an
ind-Noetherian ind-scheme, and let M • ∈ C(X–tors) be a complex of quasi-coherent
torsion sheaves on X. For any complex of flat pro-quasi-coherent pro-sheaves F• on
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X, put
ΦM •(F

•) = M • ⊗X F• ∈ C(X–tors).

According to formula (13) from Section 5.1, the functor ΦM • induces a well-defined
triangulated functor from the derived category of flat pro-quasi-coherent pro-sheaves
to the coderived category of quasi-coherent torsion sheaves,

ΦM • : D(X–flat) −−→ Dco(X–tors).

Furthermore, any morphism M • −→ N • in the coderived category Dco(X–tors)
induces a morphism of functors ΦM • −→ ΦN • , and any isomorphism M • ' N • in
Dco(X–tors) induces an isomorphism of triangulated functors ΦM • ' ΦN • .

Lemma 6.31. Let X′ and X′′ be reasonable ind-schemes over k. Let M ′ and M ′′ be
quasi-coherent torsion sheaves on X′ and X′′, and let P′ and P′′ be pro-quasi-coherent
pro-sheaves on X′ and X′′, respectively. Then there is a natural isomorphism

(M ′ �k M ′′)⊗X′×kX′′ (P
′ �k P

′′) ' (M ′ ⊗X′ P
′) �k (M ′′ ⊗X′′ P

′′)

of quasi-coherent torsion sheaves on X′ ×k X
′′.

Proof. Let X′ = “lim−→”
γ′∈Γ′

X ′γ′ and X′′ = “lim−→”
γ′′∈Γ′′

X ′′γ′′ be representations of X′ and

X′′ by inductive systems of closed immersions of reasonable closed subschemes. Then
X′ ×k X

′′ = “lim−→”
(γ′,γ′′)∈Γ′×Γ′′

X ′γ′ ×k X
′′
γ′′ is a similar representation of the ind-scheme

X ×k X
′′ (see Section 6.3). To prove the lemma, one first observes that a similar

isomorphism obviously holds for Γ-systems in place of quasi-coherent torsion sheaves.
Let M′ be a Γ′-system on X′ and M′′ be a Γ′′-system on X′′. Then the external tensor
product M′ �k M′′, as defined in Section 6.3, is a (Γ′ × Γ′′)-system on X′ ×k X

′′. One
has a natural isomorphism of (Γ′ × Γ′′)-systems

(P′ �k P
′′)⊗X′×kX′′ (M

′ �k M′′) ' (P′ ⊗X′ M′) �k (P′′ ⊗X′′ M′′).
In order to deduce the desired isomorphism of quasi-coherent torsion sheaves, it
remains to recall the definition of the functor ⊗X : X–pro × X–tors −→ X–tors in
Section 3.2 and use Lemma 6.14(b). �

Let X′ and X′′ be ind-schemes of ind-finite type over k, and let M ′• and M ′′•

be complexes of quasi-coherent torsion sheaves on X′ and X′′. Then it follows from
Lemma 6.31 that, for any complexes flat pro-quasi-coherent pro-sheaves P′• and P′′•

on X′ and X′′, the natural isomorphism

ΦM ′•�kM ′′•(P′• �k P
′′•) ' ΦM ′•(P′•) �k ΦM ′′•(P′′•)

holds in the category of complexes of quasi-coherent torsion sheaves on X′ ×k X
′′.

Corollary 6.32. Let X′ and X′′ be ind-semi-separated ind-schemes of ind-finite type
over k. Let D ′• and D ′′• be dualizing complexes on X′ and X′′, respectively, and
let E • be the related dualizing complex on X′ ×k X

′′, as in Lemma 6.26. Then the
triangulated equivalences D(X′–flat) ' Dco(X′′–tors), D(X′′–flat) ' D(X′′–tors), and
D((X′×kX

′′)–flat) ' D((X′×kX
′′)–tors) from Theorem 4.23, induced by the dualizing

complexes D ′•, D ′′•, and E •, form a commutative square diagram with the external
tensor product functors �k (21) and (24) from Sections 6.2–6.3.
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Proof. Follows immediately from the preceding discussion. �

6.7. The cotensor product as the !-tensor product. The definition of a reason-
able closed immersion of ind-schemes, which is used in the second assertion of the
following lemma, was given in Section 6.3.

Lemma 6.33. Let i : Z −→ X be a closed immersion of reasonable ind-schemes. Let
F be a pro-quasi-coherent pro-sheaf on X and M be a quasi-coherent torsion sheaf
on X. Then there is a natural morphism of quasi-coherent torsion sheaves on Z

i∗F⊗Z i
!M −−→ i!(F⊗X M ),

which is an isomorphism whenever i is a reasonable closed immersion and F is a flat
pro-quasi-coherent pro-sheaf on X.

Proof. This is a generalization of Lemma 3.6 and Proposition 3.7. To construct the
desired morphism, let L be an arbitrary quasi-coherent torsion sheaf on Z, and let
L −→ i∗F ⊗Z i

!M be a morphism in Z–tors. Applying the direct image functor i∗,
we produce a morphism i∗L −→ i∗(i

∗F ⊗Z i
!M ) ' F ⊗X i∗i

!M in X–tors (where
the isomorphism holds by Lemma 8.2 below). Composing with the morphism F ⊗X

i∗i
!M −→ F ⊗X M induced by the adjunction morphism i∗i

!M −→ M , we obtain
a morphism i∗L −→ F ⊗X M in X–tors, which corresponds by adjunction to a
morphism L −→ i!(F⊗X M ) in Z–tors.

To prove isomorphism assertion, we let Z ⊂ Z be a reasonable closed subscheme
with the closed immersion morphism k : Z −→ Z, and apply the functor k! to the
morphism in question. Notice that ik(Z) is a reasonable closed subscheme in X. By
Proposition 3.7 applied to the closed subscheme Z ⊂ Z, we have

k!(i∗F⊗Z i
!M ) ' k∗i∗F⊗OZ k!i!M .

Using the same proposition applied to the closed subscheme ik(Z) ⊂ X, we compute

k!i!(F⊗X M ) ' (ik)!(F⊗X M ) ' (ik)∗F⊗OZ (ik)!M ' k∗i∗F⊗OZ k!i!M ,

so the functor k! transforms the morphism in question into an isomorphism. As this
holds for every reasonable closed subscheme Z ⊂ Z, the assertion follows. �

Let f : Y −→ X be a morphism of ind-schemes. Then the inverse image functor
f ∗ : X–flat −→ Y–flat is exact (see Section 3.4), so it induces a triangulated functor
between the derived categories

f ∗ : D(X–flat) −−→ D(Y–flat).

Proposition 6.34. Let X be an ind-semi-separated ind-Noetherian scheme and
i : Z −→ X be a closed immersion of ind-schemes. Let D• be a dualizing complex
on X; then i!D• is a dualizing complex on Z (cf. Example 4.8(2)). Then the
triangulated equivalences D(X–flat) ' Dco(X–tors) and D(Z–flat) ' Dco(Z–tors)
from Theorem 4.23, induced by the dualizing complexes D• and i!D•, transform the
inverse image functor

i∗ : D(X–flat) −−→ D(Z–flat)
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into the right derived functor

Ri! : Dco(X–tors) −−→ Dco(Z–tors)

from Section 6.4.

Proof. Follows from Lemma 6.33 together with the fact that D• ⊗X F• is a complex
of injective quasi-coherent torsion sheaves on X for every complex F• ∈ C(X–flat)
(which was explained in the proof of Theorem 4.23). �

The following theorem is the main result of Section 6.

Theorem 6.35. Let X be an ind-separated ind-scheme of ind-finite type over k,
and let D• be a rigid dualizing complex on X (in the sense of Section 6.5). Let
∆: X −→ X ×k X be the diagonal morphism. Then for any two complexes of quasi-
coherent torsion sheaves M • and N • on X there is a natural isomorphism

(25) M • �D• N • ' R∆!(M • �k N •)

in the coderived category Dco(X–tors).

Proof. Notice the natural isomorphism of complexes of (flat) pro-quasi-coherent pro-
sheaves F• ⊗X G• ' ∆∗(F• �k G•) for all complexes of (flat) pro-quasi-coherent
pro-sheaves F• and G• on X (see Lemma 6.12). By Corollary 6.32 (applied to the
ind-schemes X′ = X = X′′) and Proposition 6.34 (applied to the closed immer-
sion ∆: X −→ X ×k X), it follows that the triangulated equivalence D(X–flat) '
Dco(X–tors) induced by D• transforms the tensor product functor (12) from Sec-
tion 5.1 into the !-tensor product in the right-hand side of (25). But this coincides
with the definition of the left-hand side of (25) given in Section 5.1 (see (14)). �

As a byproduct of Theorem 6.35, we see that a rigid dualizing complex D• on X
is unique up to a natural isomorphism in the assumptions of the theorem (because it
can be recovered as the unit object of the tensor structure on Dco(X–tors) given by
the right-hand side of (25)).

7. X-Flat Pro-Quasi-Coherent Pro-Sheaves on Y

In this section we consider a flat affine morphism of ind-schemes π : Y −→ X.
Eventually we will assume that X is ind-semi-separated, ind-Noetherian, and endowed
with a dualizing complex D•.

7.1. Semiderived category of torsion sheaves. Let f : Y −→ X be a morphism of
ind-schemes which is “representable by schemes” in the sense of Section 1.3. Assume
that the ind-scheme X is reasonable; following the discussion in Section 2.1, the
ind-scheme Y is then reasonable as well.

Moreover, let X = “lim−→”
γ∈Γ

Xγ be a representation of X by an inductive system of

closed immersions of reasonable closed subschemes. Put Yγ = Xγ ×X Y; then Yγ are
reasonable closed subschemes in Y, and Y = lim−→γ∈Γ

Yγ.
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By Theorem 2.4, we have Grothendieck abelian categories of quasi-coherent tor-
sion sheaves Y–tors and X–tors. Furthermore, there is the direct image functor
f∗ : Y–tors −→ X–tors constructed in Section 2.6. According to Lemma 2.10(b), the
functor f∗ has a left adjoint functor f ∗ : X–tors −→ Y–tors.

Furthermore, following the discussion in Section 2.8, there is also a pair of adjoint
functors of direct and inverse images of Γ-systems on X and Y, with the inverse
image functor f ∗ : (X,Γ)–syst −→ (Y,Γ)–syst left adjoint to the direct image functor
f∗ : (Y,Γ)–syst −→ (X,Γ)–syst.

Lemma 7.1. Let f : Y −→ X be a morphism of reasonable ind-schemes which is
“representable by schemes”. Then

(a) the functor f∗ : Y–tors −→ X–tors preserves direct limits (and in particular,
coproducts);

(b) the functors of direct image of Γ-systems f∗ : (Y,Γ)–syst −→ (X,Γ)–syst
and of quasi-coherent torsion sheaves f∗ : Y–tors −→ X–tors form a commutative
square diagram with the functors N 7−→ N+ : (Y,Γ)–syst −→ Y–tors and M 7−→
M+ : (X,Γ)–syst −→ X–tors.

Proof. Part (a) follows from the description of direct limits of quasi-coherent torsion
sheaves in Section 2.5 and the description of direct images in Section 2.6, together
with the fact that the direct image functors fγ∗ : Yγ–qcoh −→ Xγ–qcoh for the mor-
phisms of (concentrated) schemes fγ : Yγ −→ Xγ preserve direct limits. To prove
part (b), one observes that the functors (−)+ are constructed in terms of the func-
tors of direct image (with respect to the closed immersions Yγ −→ Y and Xγ −→ X)
and direct limit in Y–tors and X–tors (see Section 2.7). Direct images obviously
commute with direct images, and they preserve direct limits by part (a). �

Lemma 7.2. For any affine morphism of reasonable ind-schemes f : Y −→ X, the
direct image functor f∗ : Y–tors −→ X–tors is exact and faithful.

Proof. The faithfulness assertion follows immediately from the fact that the direct
image functors of quasi-coherent sheaves fγ∗ : Yγ–qcoh −→ Xγ–qcoh are faithful for
affine morphisms of schemes fγ : Yγ −→ Xγ. To check exactness, notice that exactness
of the functor of direct image of Γ-systems f∗ : (Y,Γ)–syst −→ (X,Γ)–syst follows
immediately from exactness of the functors fγ∗ for affine morphisms of schemes fγ.
To deduce exactness of the functor f∗ : Y–tors −→ X–tors, it remains to recall that
the functors (−)+ represent the abelian categories of quasi-coherent torsion sheaves as
quotient categories of the abelian categories of Γ-systems by some Serre subcategories
(see the proof of Proposition 2.8) and use Lemma 7.1(b). �

Lemma 7.3. For any flat morphism of reasonable ind-schemes f : Y −→ X, the
inverse image functor f ∗ : X–tors −→ Y–tors is exact.

Proof. The functor of inverse image of Γ-systems f ∗ : (X,Γ)–syst −→ (Y,Γ)–syst is
exact, because the functors of inverse image of quasi-coherent sheaves f ∗γ : Xγ–qcoh
−→ Yγ–qcoh are exact for flat morphisms of schemes fγ. Exactness of the functor
f ∗ : X–tors −→ Y–tors now follows from the construction of this functor in Sec-
tion 2.8, similarly to the proof of Lemma 7.2. �
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Remark 7.4. The argument above is sufficient to prove Lemma 7.3, but in fact one
can say more. The functor f ∗ : X–tors −→ Y–tors was constructed in a relatively
complicated way, using Γ-systems and the functors (−)+, in Section 2.8 in order to
include not necessarily flat morphisms f .

For a flat morphism of reasonable ind-schemes f : Y −→ X and a quasi-coherent
torsion sheaf M on X, one can simply put N(Yγ) = f ∗γM(Xγ) ∈ Yγ–qcoh for all
γ ∈ Γ. Then it follows from Lemma 4.24 that there are natural isomorphisms of
quasi-coherent sheaves k!

γδN(Yδ) = k!
γδf
∗
δM(Xδ) ' f ∗γ i

!
γδM(Xδ) ' f ∗γM(Xγ) = N(Yγ) for

all γ < δ ∈ Γ, where iγδ : Xγ −→ Xδ and kγδ : Yγ −→ Yδ are the closed immersions.
So the collection of quasi-coherent sheaves (N(Yγ))γ∈Γ defines a quasi-coherent torsion
sheaf N on Y. It is easy to see that N = f ∗M .

Lemma 7.5. Let f : Y −→ X be an affine morphism of reasonable ind-schemes. Let
M be a quasi-coherent torsion sheaf on X and Q be a pro-quasi-coherent pro-sheaf
on Y. Then there is a natural isomorphism

M ⊗X f∗Q ' f∗(f
∗M ⊗Y Q),

of quasi-coherent torsion sheaves on X.

Proof. Similarly to Lemma 2.2, the natural morphism

(26) M ⊗X f∗Q −−→ f∗(f
∗M ⊗Y Q)

is adjoint to the composition f ∗(M ⊗X f∗Q) ' f ∗M ⊗Y f
∗f∗Q −→ f ∗M ⊗Y Q

of the isomorphism f ∗(M ⊗X f∗Q) ' f ∗M ⊗Y f
∗f∗Q provided by Lemma 3.4 and

the morphism f ∗M ⊗Y f
∗f∗Q −→ f ∗M ⊗YQ induced by the adjunction morphism

f ∗f∗Q −→ Q. Similarly one constructs, for any Γ-system M on X, a natural mor-
phism of Γ-systems M⊗Xf∗Q −→ f∗(f

∗M⊗YQ), which is an isomorphism essentially
by Lemma 2.2.

To show that (26) is an isomorphism, one computes

M ⊗X f∗Q = (M |Γ ⊗X f
∗Q)+ ' (f∗(f

∗(M |Γ)⊗Y Q))+

' f∗((f
∗(M |Γ)⊗Y Q)+) ' f∗((f

∗(M |Γ))+ ⊗Y Q)

' f∗(f
∗((M |Γ)+)⊗Y Q) ' f∗(f

∗M ⊗Y Q)

using the definitions of the functors ⊗X : X–pro×X–tors −→ X–tors and ⊗Y : Y–pro×
Y–tors −→ Y–tors, and also Lemmas 2.11 and 7.1(b). The point is that both the
direct and inverse image functors, as well as the tensor products in question, commute
with the functors (−)+. �

Let π : Y −→ X be an affine morphism of reasonable ind-schemes. The
Y/X-semiderived category (or more precisely, semicoderived category) Dsi

X(Y–tors) of
quasi-coherent torsion sheaves on Y is defined as the triangulated quotient category
of the homotopy category K(Y–tors) by the thick subcategory of all complexes of
quasi-coherent torsion sheaves MMM • on Y such that the complex of quasi-coherent
torsion sheaves π∗MMM

• on X is coacyclic (in the sense of Section 4.4).

95



Notice that the functor π∗ : Y–tors −→ X–tors takes coacyclic complexes to coa-
cyclic complexes (by Lemmas 7.1(a) and 7.2), and a complex MMM • in Y–tors is acyclic
if and only if the complex π∗MMM

• is acyclic in X–tors (also by Lemma 7.2). Hence
Dsi

X(Y–tors) is an intermediate Verdier quotient category between the derived cat-
egory D(Y–tors) and the coderived category Dco(Y–tors), i. e., there are natural
Verdier quotient functors

Dco(Y–tors) � Dsi
X(Y–tors) � D(Y–tors).

Let us say that a quasi-coherent torsion sheaf KKK on Y is X-injective if the quasi-
coherent torsion sheaf π∗KKK on X is injective. We will denote the full subcategory of
X-injective quasi-coherent torsion sheaves on Y by Y–torsX-inj ⊂Y–tors.

In particular, given an affine morphism of schemes f : Y −→ X, a quasi-coherent
sheaf K on Y is said to be X-injective if the quasi-coherent sheaf f∗K on X is
injective. The full subcategory of X-injective quasi-coherent sheaves is denoted by
Y–qcohX-inj ⊂ Y–qcoh.

Lemma 7.6. (a) For any affine morphism of reasonable ind-schemes π : Y −→ X,
the full subcategory Y–torsX-inj is closed under extensions and cokernels of monomor-
phisms in Y–tors.

(b) If π : Y −→ X is a flat affine morphism of reasonable ind-schemes, then
any injective quasi-coherent torsion sheaf on Y is X-injective, that is Y–torsinj ⊂
Y–torsX-inj.

Proof. Part (a) holds because the functor π∗ : Y–tors −→ X–tors is exact and the full
subcategory X–torsinj ⊂ X–tors is closed under extensions and cokernels of monos.
Part (b) claims that the functor π∗ preserves injectives; this is so because π∗ is right
adjoint to the functor π∗, which is exact by Lemma 7.3. �

The assertions of Lemma 7.6 can be expressed by saying that Y–torsX-inj is a
coresolving subcategory in Y–tors. In particular, being a full subcategory closed under
extensions, Y–torsX-inj inherits an exact category structure from the abelian category
Y–tors. So one can form the derived category D(Y–torsX-inj) (cf. [47, paragraphs
preceding Theorem 5.2] for a discussion).

Lemma 7.7. Let π : Y −→ X be an affine morphism of reasonable ind-schemes.
Then a complex KKK • ∈ C(Y–torsX-inj) is acyclic in Y–torsX-inj if and only if the
complex π∗KKK

• in X–torsinj is contractible, and if and only if the complex π∗KKK
• is

coacyclic in X–tors.

Proof. The first assertion holds because the functor π∗ : Y–tors −→ X–tors is exact
and faithful, and a complex of injective objects in X–tors is contractible if and only if
its cocycle objects are injective. Furthermore, a complex of injectives is contractible
if and only if it is coacyclic (by Proposition 4.15(a)). �

The next proposition is a generalization of Corollary 4.18. It should be also com-
pared to [47, Theorems 5.1(a) and 5.2(a)].
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Proposition 7.8. Let X be an ind-Noetherian ind-scheme and π : Y −→ X
be a flat affine morphism of ind-schemes. Then the inclusion of exact cate-
gories Y–torsX-inj −→ Y–tors induces an equivalence of triangulated categories
D(Y–torsX-inj) ' Dsi

X(Y–tors).

Proof. It follows from Lemma 7.7 that the triangulated functor D(Y–torsX-inj) −→
Dsi

X(Y–tors) induced by the inclusion Y–torsX-inj −→ Y–tors is well-defined. More-
over, by [41, Lemma 1.6(b)], in order to show that this triangulated functor is an
equivalence it suffices to check that for any complex MMM • ∈ C(Y–tors) there exists a
complex KKK • ∈ C(Y–torsX-inj) together with a morphism of complexes MMM • −→ KKK •

whose cone becomes coacyclic after applying π∗.
In fact, one can even make the cone of MMM • −→KKK • coacyclic in Y–tors. One only

needs to observe that, since the direct image functor π∗ preserves coproducts and the
class of injective objects in X–tors is closed under coproducts (as X is ind-Noetherian;
see Lemma 4.16 and Proposition 4.17), the full subcategory Y–torsX-inj ⊂ X–tors is
closed under coproducts.

Besides, there are enough injective objects in a Grothendieck category Y–tors and
all of them belong to Y–torsX-inj; so any complex MMM • ∈ C(Y–tors) admits a termwise

monic morphism into a complex JJJ 0,• ∈ C(Y–torsX-inj). The cokernel JJJ 0,•/MMM •, in

turn, can be embedded into a complex JJJ 1,• ∈ C(Y–torsX-inj), etc. Totalizing the
bicomplex JJJ •,• by taking countable coproducts along the diagonals, one produces
the desired complex KKK • together with a morphism MMM • −→ KKK •, whose cone is
coacyclic by [40, Lemma 2.1]. We refer to [41, proof of Theorem 3.7] or [44, proof of
Proposition A.3.1(b)] for further details of this argument. �

7.2. Pro-sheaves flat over the base. Let f : Y −→ X be an affine morphism of
schemes. A quasi-coherent sheaf G on Y is said to be X-flat (or flat over X) if the
quasi-coherent sheaf f∗G on X is flat. We will denote the full subcategory of X-flat
quasi-coherent sheaves on Y by YX–flat ⊂ Y–qcoh.

Lemma 7.9. Let f : Y −→ X be an affine morphism of schemes. Then, for any
flat quasi-coherent sheaf F on Y and any X-flat quasi-coherent sheaf G on Y, the
quasi-coherent sheaf F ⊗OY

G on Y is X-flat.

Proof. The assertion is local in X, so it reduces to the case of affine schemes, for
which it means the following. Let R −→ S be a homomorphism of commutative
rings, let F be a flat S-module, and let G be an R-flat S-module (i. e., an S-module
whose underlying R-module is flat). Then F ⊗S G is an R-flat S-module. �

Clearly, the full subcategory YX–flat is closed under extensions in the abelian
category Y–qcoh (since the functor f∗ is exact and the full subcategory X–flat ⊂
X–qcoh is closed under extensions); so it inherits an exact category structure. The full
subcategory YX–flat is closed under direct limits in Y–qcoh (because the functor f∗
preserves direct limits). When the morphism f is (affine and) flat, any flat quasi-
coherent sheaf on Y is X-flat, as the functor f∗ takes flat quasi-coherent sheaves on
Y to flat quasi-coherent sheaves on X; so Y–flat ⊂ YX–flat ⊂ Y–qcoh.
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For a flat affine morphism of schemes f : Y −→ X, the equivalence of categories
from Lemma 3.11 restricts to an equivalence between the category YX–flat of X-flat
quasi-coherent sheaves on Y and the category of module objects over the algebra
object f∗OY in the tensor category X–flat. This is an equivalence of exact categories
(with the exact structure on the category of module objects over f∗OY in X–flat
coming from the exact structure on X–flat).

Lemma 7.10. Let f : Y −→ X be an affine morphism and h : Z −→ X be a mor-
phism of schemes. Consider the pullback diagram

Z ×X Y
k
//

g

��

Y

f

��

Z
h

// X

and put W = Z ×X Y. Then
(a) for any X-flat quasi-coherent sheaf G on Y, the quasi-coherent sheaf k∗G on

W is Z-flat;
(b) the functor k∗ : YX–flat −→WZ–flat takes short exact sequences to short exact

sequences;
(c) assuming that h is a flat affine morphism, for any Z-flat quasi-coherent sheaf

H on W, the quasi-coherent sheaf k∗H on Y is X-flat.

Proof. Parts (a–b): both the assertions are local in X and Z, so they reduce to
the case of affine schemes, for which they mean the following. Let R −→ S and
R −→ T be two morphisms of commutative rings. Let N be an S-module which
is flat over R; then the (T ⊗R S)-module (T ⊗R S) ⊗S N is flat over T . Let 0 −→
L −→ M −→ N −→ 0 be a short exact sequence of R-flat S-modules; then 0 −→
(T ⊗RS)⊗S L −→ (T ⊗RS)⊗S M −→ (T ⊗RS)⊗S N −→ 0 is a short exact sequence
of T -flat (T ⊗R S)-modules. Alternatively, part (a) follows from Lemma 3.3(a) and
the fact that the functor h∗ : X–qcoh −→ Z–qcoh takes flat quasi-coherent sheaves
on X to flat quasi-coherent sheaves on Z. Part (c): the assertion follows from the
fact that the functor h∗ : Z–qcoh −→ X–qcoh takes flat quasi-coherent sheaves on Z
to flat quasi-coherent sheaves on X (for a flat affine morphism h). �

Let π : Y −→ X be an affine morphism of ind-schemes. We refer to Section 3.3
for the construction of the functors of inverse and direct image of pro-quasi-coherent
pro-sheaves, π∗ : X–pro −→Y–pro and π∗ : Y–pro −→ X–pro.

A pro-quasi-coherent pro-sheaf G on Y is said to be X-flat if the pro-quasi-coherent
pro-sheaf π∗G on X is flat in the sense of Section 3.4, that is π∗G ∈ X–flat ⊂ X–pro.
Explicitly, this means that, for every closed subscheme Z ⊂ X, denoting by πZ the
related morphism W = Z×XY −→ Z, the quasi-coherent sheaf G(W) on W is Z-flat.
Given a representatation X = “lim−→”

γ∈Γ
Xγ of the ind-scheme X by an inductive system

of closed immersions (Xγ)γ∈Γ, it suffices to check the latter condition for the closed
subschemes Z = Xγ (cf. Lemma 7.10(a)). We will denote the full subcategory of
X-flat pro-quasi-coherent pro-sheaves by YX–flat ⊂Y–pro.
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Lemma 7.11. Let π : Y −→ X be an affine morphism of ind-schemes. Then, for any
flat pro-quasi-coherent pro-sheaf F on Y and any X-flat pro-quasi-coherent pro-sheaf
G on Y, the pro-quasi-coherent pro-sheaf F⊗Y G on Y is X-flat.

Proof. Follows from Lemma 7.9 and the construction of the tensor product functor
⊗Y in Section 3.1. �

The full subcategory YX–flat is closed under direct limits (in particular, coprod-
ucts) in Y–pro. When the morphism π is affine and flat, the functor π∗ : Y–pro −→
X–pro takes flat pro-quasi-coherent pro-sheaves on Y to flat pro-quasi-coherent pro-
sheaves on X (see Section 3.4); so Y–flat ⊂YX–flat ⊂Y–pro.

Let 0 −→ F −→ G −→ H −→ 0 be a short sequence of X-flat pro-quasi-coherent
pro-sheaves on Y. We say that this is an (admissible) short exact sequence in
YX–flat if, for every closed subscheme Z ⊂ X and the related closed subscheme
W = Z ×X Y ⊂ Y, the sequence of quasi-coherent sheaves 0 −→ F(W) −→
G(W) −→ H(W) −→ 0 is exact in the abelian category W–qcoh. It suffices to
check this condition for the closed subschemes Z = Xγ ⊂ X, γ ∈ Γ, belonging any
fixed representation X = “lim−→”

γ∈Γ
Xγ of the ind-scheme X by an inductive system of

closed immersions of schemes.

Proposition 7.12. For any affine morphism of ind-schemes π : Y −→ X, the cate-
gory YX–flat of X-flat pro-quasi-coherent pro-sheaves on Y, endowed with the class
of admissible short exact sequences as defined above, is an exact category.

Proof. The argument is similar to the proof of Proposition 3.5 and based on
Lemma 7.10(a–b). It is helpful to notice that a pro-quasi-coherent pro-sheaf P on

Y can be defined as a collection of quasi-coherent sheaves P(W) ∈ W–qcoh on
the closed subschemes W ⊂ Y of the form W = Z ×X Y (where Z ranges over
the closed subschemes in X), endowed with the (iso)morphisms and satisfying the
compatibilies listed in items (i–iv) of Section 3.1. �

Given an affine morphism of ind-schemes π : Y −→ X, where the ind-scheme
X = “lim−→”

γ∈Γ
Xγ is represented by an inductive system of closed immersions (Xγ)(γ∈Γ),

we put Yγ = Xγ ×X Y. Then Y = “lim−→”
γ∈Γ

Yγ is a representation of Y by an

inductive system of closed immersions.

Lemma 7.13. A complex of X-flat pro-quasi-coherent pro-sheaves G• on Y is
acyclic (as a complex in YX–flat) if and only if, for every γ ∈ Γ, the complex of
Xγ-flat quasi-coherent sheaves G•(Xγ) on Yγ is acyclic (as a complex in (Yγ)Xγ–flat).

Proof. This is a generalization of Lemma 4.13, provable in the same way. The “only
if” assertion is obvious. To prove the “if”, one needs to observe that the functor
assigning to an acyclic complex of quasi-coherent sheaves its sheaves of cocycles can
be expressed as a kind of cokernel in the category of quasi-coherent sheaves, and
as such, commutes with inverse images (whenever the latter preserve acyclicity of a
given complex). Then one needs also to use Lemma 7.10(a–b). �
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For any affine morphism of ind-schemes π : Y −→ X, the direct image functor
π∗ : Y–pro −→ X–pro takes the full subcategory YX–flat ⊂ Y–pro into the full
subcategory X–flat ⊂ X–pro. The resulting direct image functor

π∗ : YX–flat −−→ X–flat

is an exact functor between exact categories (i. e, it takes short exact sequences
to short exact sequences). This follows immediately from the observation that the
direct image functor πZ∗ : WZ–flat −→ Z–flat for the affine morphism πZ : W −→ Z
is exact (which is true because the functor πZ∗ : W–qcoh −→ Z–qcoh is exact).

For a flat affine morphism of ind-schemes π : Y −→ X, the inclusion functor
Y–flat −→ YX–flat is exact; in fact, a short sequence in Y–flat is exact if and
only if it is exact in YX–flat. Furthermore, there is an exact inverse image functor

π∗ : X–flat −−→ Y–flat ⊂ YX–flat,

which is left adoint to π∗.

Lemma 7.14. Let π : Y −→ X be an affine morphism of ind-schemes. Then a
complex G• ∈ C(YX–flat) is acyclic in YX–flat if and only if the complex π∗G

• is
acyclic in X–flat.

Proof. Follows from Lemmas 4.13 and 7.13 together with the fact that, for an affine
morphism of schemes f : Y −→ X, a complex G• in YX–flat is acyclic if and only if
the complex f∗G• is acyclic in X–flat. The latter assertion holds because the functor
f∗ : Y–qcoh −→ X–qcoh is exact and faithful. �

For a flat affine morphism of ind-schemes π : Y −→ X, the equivalence of categories
from Proposition 3.13(a) restricts to an equivalence between the category YX–flat of
X-flat pro-quasi-coherent pro-sheaves on Y and the category of module objects over
the algebra object π∗OY in the tensor category X–flat. This is an equivalence of exact
categories (with the exact structure on the category of module objects over π∗OY in
X–flat coming from the exact structure on X–flat).

7.3. The triangulated equivalence. The following theorem, generalizing Theo-
rem 4.23, is the main result of Section 7.

Theorem 7.15. Let X be an ind-semi-separated ind-Noetherian ind-scheme with
a dualizing complex D•, and let π : Y −→ X be a flat affine morphism of ind-
schemes. Then there is a natural equivalence of triangulated categories Dsi

X(Y–tors) '
D(YX–flat), provided by mutually inverse triangulated functors HomY-qc(π

∗D•,−) :
D(Y–torsX-inj) −→ D(YX–flat) and π∗D• ⊗Y − : D(YX–flat) −→ D(Y–torsX-inj).

The notation HomY-qc(−,−) will be explained below, and the proof of Theo-
rem 7.15 will be given below in this Section 7.3. The next two lemmas are not
needed for this proof and are included here mostly for completeness of the exposi-
tion and to help the reader feel more comfortable (they will be useful, however, in
Section 9.8). The subsequent three lemmas play a more important role, and among
them Lemma 7.20 is essential.
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Lemma 7.16. Let f : Y −→ X be a flat affine morphism of schemes and Z ⊂ X
be a reasonable closed subscheme with the closed immersion morphism i : Z −→ X.
Consider the pullback diagram

Z ×X Y
k
//

g

��

Y

f

��

Z
i

// X

and put W = Z ×X Y. Let M be a quasi-coherent sheaf on X and G be an X-flat
quasi-coherent sheaf on Y; put N = f ∗M ∈ Y–qcoh. Then the natural morphism
of quasi-coherent sheaves on W

k∗G ⊗OW
k!N −−→ k!(G ⊗OY

N )

from Lemma 3.6 is an isomorphism.

Proof. The assertion is local in X, so it reduces to the case of affine schemes, for
which it means the following. Let R −→ S be a homomorphism of commutative
rings such that S is a flat R-module and R −→ T be a surjective homomorphism of
commutative rings with a finitely generated kernel ideal. Let M be an R-module and
G be an R-flat S-module. Then the natural homomorphism of (T ⊗R S)-modules

((T ⊗R S)⊗S G)⊗(T⊗RS) HomS(T ⊗R S, S⊗RM)

= G⊗S HomS(T ⊗R S, S⊗RM) = G⊗S HomR(T, S⊗RM)

−−→ HomR(T, G⊗RM) = HomS(T ⊗R S, G⊗S (S⊗RM))

is an isomorphism, because both the maps

G⊗S HomR(T, S⊗RM) ←−− G⊗S (S⊗R HomR(T,M))

= G⊗R HomR(T,M) −−→ HomR(T, G⊗RM)

are isomorphisms (cf. Lemma 4.24 for the first arrow). �

Lemma 7.17. Let π : Y −→ X be a flat affine morphism of reasonable ind-schemes
and Z ⊂ X be a reasonable closed subscheme with the closed immersion morphism
i : Z −→ X. Put W = Z ×X Y and denote by k : W −→ Y the natural closed
immersion. Let M be a quasi-coherent torsion sheaf on X and G be an X-flat pro-
quasi-coherent pro-sheaf on Y; put NNN = π∗M ∈ Y–tors. Then there is a natural
isomorphism k!(G⊗Y NNN ) ' k∗G⊗OW

k!NNN = G(W) ⊗OW
NNN (W) in W–qcoh.

Proof. The argument is similar to the proof of Proposition 3.7 and uses Lemma 7.16.
�

Lemma 7.18. Let f : Y −→ X be a flat affine morphism of semi-separated schemes
and Z ⊂ X be a reasonable closed subscheme with the closed immersion morphism
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i : Z −→ X. Consider the pullback diagram

(27)

Z ×X Y
k
//

g

��

Y

f

��

Z
i

// X

and put W = Z×XY. LetM be a quasi-coherent sheaf on X and K be an X-injective
quasi-coherent sheaf on Y; put N = f ∗M ∈ Y–qcoh. Then the natural morphism
of quasi-coherent sheaves on W

k∗HomY-qc(N ,K) −−→ HomW-qc(k
!N , k!K)

from Lemma 4.25 is an isomorphism.

Proof. Since the direct image functor g∗ : W–qcoh −→ Z–qcoh is exact and faithful,
it suffices to check that the morphism in question becomes an isomorphism after
applying g∗. We have

g∗k
∗HomY-qc(f

∗M,K) ' i∗f∗HomY-qc(f
∗M,K) ' i∗HomX-qc(M, f∗K)

by Lemmas 3.3(a) and 4.2. On the other hand,

g∗HomW-qc(k
!f ∗M, k!K) ' g∗HomW-qc(g

∗i!M, k!K)

' HomZ-qc(i
!M, g∗k

!K) ' HomZ-qc(i
!M, i!f∗K)

by Lemmas 4.24, 4.2, and 2.3(a). The assertion now follows from Lemma 4.25, as
the quasi-coherent sheaf f∗K on X is injective by assumption. �

Lemma 7.19. Let f : Y −→ X be an affine morphism of semi-separated schemes
and Z ⊂ X be a reasonable closed subscheme with the closed immersion morphism
i : Z −→ X. Consider the pullback diagram (27) with W = Z ×X Y. Let (Qξ)ξ∈Ξ be
a family of quasi-coherent sheaves on Y such that the quasi-coherent sheaves f∗Q on
X are flat cotorsion. Then the natural morphism of quasi-coherent sheaves on W

k∗
∏

ξ∈Ξ
Qξ −−→

∏
ξ∈Ξ

k∗Qξ

from Lemma 4.26 is an isomorphism.

Proof. As in the previous proof, it suffices to show that the morphism in question
becomes an isomorphism after applying g∗. Since the direct image functors f∗ and g∗,
being right adjoints, preserve infinite products of quasi-coherent sheaves, and g∗k

∗ '
i∗f∗ by Lemma 3.3(a), the desired assertion follows from Lemma 4.26. �

Lemma 7.20. Let f : Y −→ X be an affine morphism of semi-separated schemes
and Z ⊂ X be a reasonable closed subscheme with the closed immersion morphism
i : Z −→ X. Consider the pullback diagram (27) with W = Z ×X Y. Let M• be a
complex of quasi-coherent sheaves on X and K• be a complex of X-injective quasi-
coherent sheaves on Y; put N • = f ∗M• ∈ C(Y–qcoh). Then the natural morphism
of complexes of quasi-coherent sheaves on W

k∗HomY-qc(N •,K•) −−→ HomW-qc(k
!N •, k!K•)
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from Lemma 4.27 is an isomorphism.

Proof. This is provable similarly to Lemma 7.18, using Lemma 4.3 in order to reduce
the assertion to Lemma 4.27. Alternatively, a direct proof, similar to the proof
of Lemma 4.27 and based on the result of Lemma 7.18, is possible; in particular,
assuming additionally that X is Noetherian and M• is a complex of injective quas-
coherent sheaves on X, one can use Lemma 7.19. (For this purpose, one observes
that f∗HomY-qc(f

∗Mp,Kq) ' HomX-qc(Mp, f∗Kq) are flat cotorsion quasi-coherent
sheaves on X by Lemmas 4.4(d) and 4.9(a).) �

Let π : Y −→ X be a flat affine morphism of reasonable ind-semi-separated ind-
schemes. Let E • ∈ C(X–tors) be a complex of quasi-coherent torsion sheaves on
X, and let KKK • ∈ C(Y–torsX-inj) be a complex of X-injective quasi-coherent torsion
sheaves on Y. Then the complex HomY-qc(π

∗E •,KKK •) ∈ C(Y–pro) of pro-quasi-
coherent pro-sheaves on Y is constructed as follows.

For every reasonable closed subscheme Z ⊂ X, consider the pullback diagram

Z ×X Y
k
//

πZ
��

Y

π
��

Z
i

// X

so W = Z ×X Y is a reasonable closed subscheme in Y. Put

HomY-qc(π
∗E •,KKK •)(W) = HomW-qc(k

!π∗E •, k!KKK •)

' HomW-qc(π
∗
Zi

!E •, k!KKK •) = HomW-qc(π
∗
ZE •(Z),KKK

•
(W)),

where the middle isomorphism holds by Remark 7.4. According to Lemma 7.20,
for every pair of reasonable closed subschemes Z ′ ⊂ Z ′′ ⊂ X and the related closed
subschemes W′ ⊂W′′ ⊂ Y, W(s) = Z(s) ×X Y with the natural closed immersion
kW′W′′ : W′ −→W′′, we have

HomY-qc(π
∗E •,KKK •)(W′) ' k∗W′W′′ HomY-qc(π

∗E •,KKK •)(W′′)

as required for the construction of a pro-quasi-coherent pro-sheaf. This explains the
meaning of the notation in Theorem 7.15.

Lemma 7.21. Let π : Y −→ X be a flat affine morphism of reasonable ind-semi-
separated ind-schemes. Let E • be a complex of quasi-coherent torsion sheaves on X,
and let KKK • be a complex of X-injective quasi-coherent torsion sheaves on Y. Then
there is a natural isomorphism

π∗HomY-qc(π
∗E •,KKK •) ' HomX-qc(E

•, π∗KKK
•)

of complexes of pro-quasi-coherent pro-sheaves on X (where the functor HomX-qc in
the right-hand side was defined before the proof of Theorem 4.23 in Section 4.5).
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Proof. In the notation above, we have

πZ∗HomY-qc(π
∗E •,KKK •)(W) ' πZ∗HomW-qc(π

∗
Zi

!E •, k!KKK •)

' HomZ-qc(i
!E •, πZ∗k

!KKK •) = HomZ-qc(i
!E •, i!π∗KKK

•) = HomX-qc(E
•, π∗KKK

•)(Z),

where the second isomorphism is provided by Lemma 4.3, while the isomorphism
πZ∗k

! ' i!π∗ holds by the construction of the functor π∗ : Y–tors −→ X–tors in
Section 2.6. Having this computation done, it remains to recall the construction of
the functor π∗ : Y–pro −→ X–pro from Section 3.3. �

Proof of Theorem 7.15. The argument follows the idea of the proof of [47, Theo-
rem 5.6], which is a module version.

The equivalence Dsi
X(Y–tors) ' D(Y–torsX-inj) is provided by Proposition 7.8.

The tensor product functor ⊗Y : Y–tors ×Y–pro −→ Y–tors was constructed in
Section 3.2. Here we restrict it to the full subcategory of X-flat pro-quasi-coherent
pro-sheaves YX–flat ⊂ Y–pro, obtaining a functor ⊗Y : Y–tors × YX–flat −→
Y–tors. This functor is extended to complexes similarly to the construction in (the
proof of) Theorem 4.23, using the coproduct totalization of bicomplexes. Given a
complex of quasi-coherent torsion sheaves EEE • on Y, we obtain the functor

EEE • ⊗Y − : C(YX–flat) −−→ C(Y–tors),

which obviously descends to a triangulated functor between the homotopy categories
EEE • ⊗Y − : K(YX–flat) −→ K(Y–tors).

Now let us assume that EEE • = π∗E •, where E • ∈ C(X–torsinj) is a complex of
injective quasi-coherent torsion sheaves on X. Let G• be a complex of X-flat pro-
quasi-coherent pro-sheaves on Y. By Lemma 7.5, we have

π∗(π
∗E • ⊗Y G•) ' E • ⊗X π∗G

•

(recall that the functor π∗ preserves coproducts by Lemma 7.1(a)). Following the
proof of Theorem 4.23, E • ⊗X π∗G

• is a complex of injective quasi-coherent torsion
sheaves on X (since π∗G

• is a complex of flat pro-quasi-coherent pro-sheaves on X).
So π∗E •⊗Y G• is a complex of X-injective quasi-coherent torsion sheaves on Y. We
have constructed a triangulated functor

(28) π∗E • ⊗Y − : K(YX–flat) −−→ K(Y–torsX-inj).

Let us check that the latter functor induces a well-defined triangulated functor

(29) π∗E • ⊗Y − : D(YX–flat) −−→ D(Y–torsX-inj).

We need to show that the complex π∗E •⊗Y G• is acyclic with respect to Y–torsX-inj

whenever a complex G• is acyclic with respect to YX–flat. By Lemma 7.7, it suffices
to check that the complex π∗(π

∗E •⊗YG•) ' E •⊗X π∗G
• in X–torsinj is contractible.

By Lemma 7.14, the complex π∗G
• is acyclic in X–flat. Now the functor (29) is

well-defined because the functor (5) from (the proof of) Theorem 4.23 is well-defined.
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On the other hand, for any complex E • ∈ C(X–tors), the construction before this
proof provides a functor

HomY-qc(π
∗E •,−) : C(Y–torsX-inj) −−→ C(Y–pro),

which obviously descends to a triangulated functor between the homotopy categories
HomY-qc(π

∗E •,−) : K(Y–torsX-inj) −→ K(Y–pro).
Assume that E • is a complex of injective quasi-coherent torsion sheaves on X,

and let KKK • be a complex of X-injective quasi-coherent torsion sheaves on Y. Then,
according to the proof of Theorem 4.23, HomX-qc(E •, π∗KKK

•) is a complex of flat pro-
quasi-coherent pro-sheaves on X. By Lemma 7.21, it follows that HomY-qc(π

∗E •,KKK •)
is a complex of X-flat pro-quasi-coherent pro-sheaves on Y. We have constructed a
triangulated functor

(30) HomY-qc(π
∗E •,−) : K(Y–torsX-inj) −−→ K(YX–flat).

Let us check that the latter functor induces a well-defined triangulated functor

(31) HomY-qc(π
∗E •,−) : D(Y–torsX-inj) −−→ D(YX–flat).

We need to show that the complex HomY-qc(π
∗E •,KKK •) is acyclic with respect

to YX–flat whenever a complex KKK • is acyclic with respect to Y–torsX-inj. By
Lemma 7.14, it suffices to check that the complex π∗HomY-qc(π

∗E •,KKK •) '
HomX-qc(E •, π∗KKK

•) is acyclic in X–flat. By Lemma 7.7, the complex π∗KKK
• is

contractible in X–torsinj, and the assertion follows.
It is straightforward to see that the functor (30) is right adjoint to the functor (28).

Hence the functor (31) is right adjoint to the functor (29). It remains to show that
the functors (29) and (31) are mutually inverse equivalences when E • = D• is a
dualizing complex on X. For this purpose, it suffices to check that the adjunction
morphisms are isomorphisms.

Now, similarly to the proof of [47, Theorem 5.6], we consider the direct image
(“forgetful”) functors

π∗ : Dsi
X(Y–tors) −−→ Dco(X–tors),

π∗ : D(Y–torsX-inj) −−→ K(X–torsinj),

and
π∗ : D(YX–flat) −−→ D(X–flat),

which are well-defined, and moreover, conservative (by the definition of the semide-
rived category or) by Lemmas 7.7 and 7.14.

As we have already seen in the above discussion, by Lemmas 7.5 and 7.21, the
direct image functors transform the functors (29) and (31) into the functors (5)
and (7) from (the proof of) Theorem 4.23. In other words, there are commutative

105



diagrams of triangulated functors

D(YX–flat)
π∗D•⊗Y−

//

π∗
��

D(Y–torsX-inj)

π∗
��

Dsi
X(Y–tors)

π∗
��

D(X–flat)
D•⊗X−

// K(X–torsinj) Dco(X–tors)

and

Dsi
X(Y–tors)

π∗
��

D(Y–torsX-inj)
HomY-qc(π∗D•,−)

//

π∗
��

D(YX–flat)

π∗
��

Dco(X–tors) K(X–torsinj)
HomX-qc(D•,−)

// D(X–flat)

The direct image functors also transform the adjunction morphisms for the pair of
adjoint functors π∗D•⊗Y− and HomY-qc(π

∗D•,−) into the adjunction morphisms for
the pair of adjoint functors D•⊗X− and HomX-qc(D•,−). Since the latter pair of ad-
junction morphisms are isomorphisms in the respective derived/homotopy categories
by Theorem 4.23, and the direct image functors are conservative, the former pair of
adjunction morphisms are isomorphisms in the derived categories of the respective
exact categories, too. �

8. The Semitensor Product

The aim of this section is to construct the semitensor product operation

♦π∗D• : Dsi
X(Y–tors)× Dsi

X(Y–tors) −−→ Dsi
X(Y–tors)

on the Y/X-semiderived category of quasi-coherent torsion sheaves on Y, making
Dsi

X(Y–tors) a tensor triangulated category. The inverse image π∗D• on Y of the
dualizing complex D• on X is the unit object of this tensor structure.

We follow the approach of [47, Section 6], with suitable modifications. We also
explain how to correct a small mistake in the exposition in [47, Section 6].

8.1. Underived tensor products in the relative context. We start with a se-
quence of lemmas extending Lemma 5.2 to the relative situation.

Lemma 8.1. Let π : Y −→ X be an affine morphism of ind-schemes. Let F• ∈
C(X–flat) be a complex of flat pro-quasi-coherent pro-sheaves on X and G• be a
complex of X-flat pro-quasi-coherent pro-sheaves on Y which is acyclic as a complex
in YX–flat. Then the complex π∗F• ⊗Y G• of X-flat pro-quasi-coherent pro-sheaves
on Y is also acyclic as a complex in YX–flat.

Proof. First of all, π∗F• is a complex of flat pro-quasi-coherent pro-sheaves on Y
according to the discussion in Section 3.4, hence π∗F•⊗YG• is a complex of X-flat pro-
quasi-coherent pro-sheaves on Y by Lemma 7.11. (Notice that the full subcategory of
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X-flat pro-quasi-coherent pro-sheaves is closed under direct limits, and in particular,
under coproducts in Y–pro, as one can see from the discussion in Section 3.5.)

By Lemma 7.14, in order to show that the complex π∗F• ⊗Y G• is acyclic in
YX–flat, it suffices to check that the complex π∗(π

∗F•⊗YG•) is acyclic in X–flat. By
the projection formula (2) from Section 3.3, we have π∗(π

∗F•⊗Y G•) ' F•⊗X π∗G
•.

Again by Lemma 7.14, the complex π∗G
• is acyclic in X–flat. It remains to refer to

Lemma 5.2(a). �

Similarly one can prove that the complex π∗F•⊗YG• is acyclic in YX–flat whenever
a complex F• is acyclic in X–flat and G• ∈ C(YX–flat) is an arbitrary complex.

The next lemma is another version of projection formula for the action of pro-
quasi-coherent pro-sheaves in quasi-coherent torsion sheaves (cf. Lemma 7.5).

Lemma 8.2. Let f : Y −→ X be an affine morphism of reasonable ind-schemes. Let
P be a pro-quasi-coherent pro-sheaf on X and N be a quasi-coherent torsion sheaf
on Y. Then there is a natural isomorphism

P⊗X f∗N ' f∗(f
∗P⊗Y N )

of quasi-coherent torsion sheaves on X.

Proof. The argument is similar to (but simpler than) the proof of Lemma 7.5. The
natural morphism

(32) P⊗X f∗N −−→ f∗(f
∗P⊗Y N )

is adjoint to the composition f ∗(P⊗Xf∗N ) ' f ∗P⊗Yf
∗f∗N −→ f ∗P⊗YN of the iso-

morphism f ∗(P⊗Xf∗N ) ' f ∗P⊗Yf
∗f∗N provided by Lemma 3.4 and the morphism

f ∗P⊗Y f
∗f∗N −→ f ∗P⊗Y N induced by the adjunction morphism f ∗f∗N −→ N .

In the notation of Section 7.1, we consider Γ-systems of quasi-coherent sheaves
on X and on Y. Similarly to the above one constructs, for any Γ-system N on Y, a
natural morphism of Γ-systems P⊗Xf∗N −→ f∗(f

∗P⊗YN), which is an isomorphism
essentially by Lemma 2.2.

To show that (32) is an isomorphism, it remains to compute

P⊗X f∗N ' P⊗X f∗((N|Γ)+) ' P⊗X (f∗(N|Γ))+

' (P⊗X f∗(N|Γ))+ ' (f∗(f
∗P⊗Y N|Γ))+ ' f∗((f

∗P⊗Y N|Γ)+)

' f∗(f
∗P⊗Y (NΓ)+) ' f∗(f

∗P⊗Y N ),

using the definitions of the functors ⊗X : X–pro×X–tors −→ X–tors and ⊗Y : Y–pro×
Y–tors −→ Y–tors, and also Lemma 7.1(b). The point is that the direct image and
tensor product functors in question commute with the functors (−)+. �

Lemma 8.3. Let π : Y −→ X be an affine morphism of reasonable ind-schemes. Let
F• ∈ C(X–flat) be a complex of flat pro-quasi-coherent pro-sheaves on X and NNN • be
a complex of quasi-coherent torsion sheaves on Y such that the complex of quasi-
coherent torsion sheaves π∗NNN

• on X is coacyclic. Then the complex π∗F• ⊗Y NNN •

of quasi-coherent torsion sheaves on Y also has the property that its direct image
π∗(π

∗F• ⊗Y NNN •) is a coacyclic complex of quasi-coherent torsion sheaves on X.
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Proof. By Lemma 8.2, we have π∗(π
∗F• ⊗Y NNN •) ' F• ⊗Y π∗NNN

• (recall that the
direct image functor π∗ : Y–tors −→ X–tors preserves coproducts by Lemma 7.1(a)).
So it remains to refer to Lemma 5.2(b). �

Similarly one can prove, assuming that X is an ind-Noetherian ind-scheme and
using Lemma 5.2(c), that π∗(π

∗F• ⊗Y NNN •) is a coacyclic complex of quasi-coherent
torsion sheaves on X whenever F• is an acyclic complex in X–flat and NNN • ∈ C(Y–tors)
is an arbitrary complex.

Lemma 8.4. Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X be an
affine morphism of ind-schemes. Let M • ∈ C(X–tors) be a complex of quasi-coherent
torsion sheaves on X and G• be a complex of X-flat pro-quasi-coherent pro-sheaves on
Y which is acyclic as a complex in YX–flat. Then the complex G•⊗Yπ

∗M • of quasi-
coherent torsion sheaves on Y has the property that its direct image π∗(G

•⊗Yπ
∗M •)

is a coacyclic complex of quasi-coherent torsion sheaves on X.

Proof. By Lemma 7.5, we have π∗(G
• ⊗Y π∗M •) ' π∗G

• ⊗X M •, so it remains to
refer to Lemma 5.2(c). �

Similarly one can prove, using Lemma 5.2(b), that π∗(G
•⊗Y π

∗M •) is a coacyclic
complex of quasi-coherent torsion sheaves on X whenever M • is a coacyclic complex
in X–tors and G• ∈ C(YX–flat) is an arbitrary complex.

Let π : Y −→ X be an affine morphism of ind-schemes. Consider the functor of
tensor product composed with inverse image

π∗(−)⊗Y − : C(X–flat)× C(YX–flat) −−→ C(YX–flat).

It follows from Lemma 8.1 and the subsequent discussion that this functor descends
to a triangulated functor of two arguments

(33) π∗(−)⊗Y − : D(X–flat)× D(YX–flat) −−→ D(YX–flat).

Let X be an ind-Noetherian ind-scheme, and let Y −→ X be an affine morphism of
schemes. Consider the two functors of tensor product composed with inverse image

π∗(−)⊗Y − : C(X–flat)× C(Y–tors) −−→ C(Y–tors),

−⊗Y π∗(−) : C(YX–flat)× C(X–tors) −−→ C(Y–tors).

It follows from Lemmas 8.3–8.4 and the discussion that these functors descend to
triangulated functors of two arguments

π∗(−)⊗Y − : D(X–flat)× Dsi
X(Y–tors) −−→ Dsi

X(Y–tors),(34)

−⊗Y π∗(−) : D(YX–flat)× Dco(X–tors) −−→ Dsi
X(Y–tors).(35)

8.2. Relatively homotopy flat resolutions. Let π : Y −→ X be an affine mor-
phism of reasonable ind-schemes. Recall once again that, for any flat pro-quasi-
coherent pro-sheaf F on Y and any X-flat pro-quasi-coherent pro-sheaf Q on Y, the
pro-quasi-coherent pro-sheaf F⊗Y Q on Y is X-flat (see Lemma 7.11).

We will say that a complex F• ∈ C(Y–flat) of flat pro-quasi-coherent pro-sheaves
on Y is relatively homotopy flat if the following two conditions hold:
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(i) for any complex Q• ∈ C(YX–flat) which is acyclic in YX–flat, the complex
F• ⊗Y Q• is acyclic in YX–flat;

(ii) for any complex NNN • ∈ C(Y–tors) such that the complex π∗NNN
• is coacyclic

in X–tors, the complex π∗(F
• ⊗Y NNN •) is coacyclic in X–tors.

Lemma 8.5. Let π : Y −→ X be an affine morphism of reasonable ind-schemes.
Then

(a) the relatively homotopy flat complexes form a full triangulated subcategory
closed under coproducts in K(Y–flat);

(b) for any complex P• ∈ C(X–flat) of flat pro-quasi-coherent pro-sheaves on X, the
complex π∗P• ∈ C(Y–flat) of flat pro-quasi-coherent pro-sheaves on Y is relatively
homotopy flat.

Proof. Part (a): clearly, any complex in Y–flat which is homotopy equivalent to a
relatively homotopy flat complex is also relatively homotopy flat. Furthermore, for
any complex Q• ∈ K(YX–flat), the functor − ⊗Y Q• : K(Y–flat) −→ K(YX–flat)
is a triangulated functor preserving coproducts (see Section 3.5), and the class of
all short exact sequences (hence the class of all acyclic complexes) in YX–flat is
closed under coproducts. Similarly, for any complex NNN • ∈ K(Y–tors), the functor
−⊗YNNN • : K(Y–flat) −→ K(Y–tors) is a triangulated functor preserving coproducts,
and the class all complexes in Y–tors whose direct images are coacyclic in X–tors is
closed under coproducts (by Lemma 7.1(a)). Therefore, the class of all relatively
homotopy flat complexes is closed under shifts, cones, and coproducts in K(Y–flat).

Part (b) follows immediately from Lemmas 8.1 and 8.3. �

The next two abstract category-theoretic lemmas are well-known.

Lemma 8.6. Let B be an additive category with countable coproducts, and let · · · −→
B•2 −→ B•1 −→ B•0 −→ 0 be a bounded above complex of complexes in B. Let T • be
the total complex of the bicomplex B•• constructed by taking infinite coproducts along
the diagonals. Then the complex T • ∈ K(B) is homotopy equivalent to a complex
which can be obtained from the complexes B•n, n ≥ 0, using the operations of shift,
cone, and countable coproduct.

Proof. Denote by C•n the total complex of the finite complex of complexes B•n −→
B•n−1 −→ · · · −→ B•1 −→ B•0. Then there is a natural termwise split monomorphism
of complexes C•n −→ T • for every n ≥ 0, and the complex T • is the direct limit of
the sequence of its termwise split subcomplexes C•n. Hence the telescope sequence
0 −→

∐
n≥0C

•
n −→

∐
n≥0C

•
n −→ T • −→ 0 is a termwise split short exact sequence of

complexes in B. It follows that the complex T • is homotopy equivalent to the cone of
the morphism of complexes

∐
n≥0C

•
n −→

∐
n≥0C

•
n. It remains to observe that every

complex C•n can be obtained from the complexes B•0, . . . , B•n using the operations of
shift and cone finitely many times. �

Lemma 8.7. Let A and B be additive categories, F : A −→ B be a functor, and
G : B −→ A be a functor right adjoint to F . Denote the adjunction morphisms by
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µ : FG −→ IdB and η : IdA −→ GF . Then, for any object B ∈ B, there is a “bar-
complex” in B

· · · −→ Bn = (FG)n+1(B) −→ · · · −→ FGFG(B) −→ FG(B) −→ B −→ 0

whose differential dn : Bn −→ Bn−1 is the alternating sum of n+ 1 morphisms

dn =
∑n

i=0
(−1)i (FG)iµ(FG)n−i(B) : (FG)n+1(B) −−→ (FG)n(B).

Applying the functor G to the above complex produces a contractible complex in A
with the contracting homotopy hn = η(GF )nG(B) : (GF )nG(B) −→ (GF )n+1G(B).

Proof. The proof is a straightforward computation using the identity (Gµ) ◦ (ηG) =
idGFG. �

Proposition 8.8. Let π : Y −→ X be a flat affine morphism of reasonable ind-
schemes. Then for any complex P• ∈ C(YX–flat) of X-flat pro-quasi-coherent pro-
sheaves on Y there exists a relatively homotopy flat complex F• of flat pro-quasi-
coherent pro-sheaves on Y together with a morphism of complexes F• −→P• whose
cone is acyclic in YX–flat.

Proof. Notice first of all that Y–flat ⊂ YX–flat, since the morphism π assumed to
be flat. In the context of Lemma 8.7, put A = C(X–flat), B = C(YX–flat), F =
π∗ : C(X–flat) −→ C(Y–flat) ⊂ C(YX–flat), and G = π∗ : C(YX–flat) −→ C(X–flat).
Applying the construction of the lemma to the object B = P• ∈ C(YX–flat) = B,
we obtain a bicomplex

· · · −→ (π∗π∗)
n+1(P•) −→ · · · −→ π∗π∗π

∗π∗P
• −→ π∗π∗P

• −→P• −→ 0

in YX–flat. The differentials are the alternating sums of the maps induced by the
adjunction morphism π∗π∗ −→ Id.

Let F• be the total complex of the truncated bicomplex · · · −→ π∗π∗π
∗π∗P

• −→
π∗π∗P

• −→ 0, constructed by taking infinite coproducts along the diagonals. By
the last assertion of Lemma 8.7, the cone H• of the morphism F• −→ P• is a com-
plex in YX–flat which becomes contractible after applying the direct image functor
π∗ : YX–flat −→ X–flat. By Lemma 7.14, it follows that the complex H• is acyclic in
YX–flat, as desired.

On the other hand, by Lemma 8.6, the complex F• can be obtained from the com-
plexes (π∗π∗)

n+1(P•), n ≥ 0, using the operations of shift, cone, countable coprod-
uct, and the passage to a homotopy equivalent complex. The complex π∗(π

∗π∗)
n(P•)

is a complex of flat pro-quasi-coherent pro-sheaves on X; hence, by Lemma 8.5(b),
the complex (π∗π∗)

n+1(P•) is a relatively homotopy flat complex of flat pro-quasi-
coherent pro-sheaves on Y. According to Lemma 8.5(a), it follows that the complex
F• is relatively homotopy flat. �

Now we have to work out the torsion sheaf side of the story. We will say that
a complex GGG • ∈ C(Y–tors) of quasi-coherent torsion sheaves on Y is homotopy
Y/X-flat if, for any complex P• ∈ C(YX–flat) which is acyclic in YX–flat, the
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complex P• ⊗Y GGG • of quasi-coherent torsion sheaves on Y has the property that its
direct image π∗(P

• ⊗Y GGG •) is coacyclic in X–tors.

Lemma 8.9. Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X be an
affine morphism of ind-schemes. Then

(a) the homotopy Y/X-flat complexes form a full triangulated subcategory closed
under coproducts in K(Y–tors);

(b) for any complex M • ∈ C(X–tors) of quasi-coherent torsion sheaves on X, the
complex π∗M • ∈ C(Y–tors) of quasi-coherent torsion sheaves on Y is homotopy
Y/X-flat.

Proof. Part (a): clearly, any complex in Y–tors which is homotopy equivalent to
a homotopy Y/X-flat compex is also homotopy Y/X-flat. Furthermore, for any
complex P• ∈ K(YX–flat), the functor P• ⊗Y − : K(Y–tors) −→ K(Y–tors) is a
triangulated functor preserving coproducts, and the class of all complexes in Y–tors
whose direct images are coacyclic in X–tors is closed under coproducts. Therefore, the
class of all homotopy Y/X-flat complexes is closed under shifts, cones, and coproducts
in K(Y–tors). These arguments do not need the assumption that X is ind-Noetherian
yet. Part (b) follows immediately from Lemma 8.4 (which depends on the ind-
Noetherianity assumption). �

Proposition 8.10. Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X
be an affine morphism of ind-schemes. Then for any complex NNN • ∈ C(Y–tors)
of quasi-coherent torsion sheaves on Y there exists a homotopy Y/X-flat complex
GGG • of quasi-coherent torsion sheaves on Y together with a morphism of complexes
GGG • −→NNN • whose cone has the property that its direct image is coacyclic in X–tors.

Proof. In the context of Lemma 8.7, put A = C(X–tors), B = C(Y–tors), F =
π∗ : C(X–tors) −→ C(Y–tors), and G = π∗ : C(Y–tors) −→ C(X–tors). Applying the
construction of the lemma to the object B = NNN • ∈ C(Y–tors) = B, we obtain a
bicomplex

· · · −→ (π∗π∗)
n+1(NNN •) −→ · · · −→ π∗π∗π

∗π∗NNN
• −→ π∗π∗NNN

• −→NNN • −→ 0

in Y–tors. The differentials are the alternating sums of the maps induced by the
adjunction morphism π∗π∗ −→ Id.

Let GGG • be the total complex of the truncated bicomplex · · · −→ π∗π∗π
∗π∗NNN

• −→
π∗π∗NNN

• −→ 0, constructed by taking infinite coproducts along the diagonals. By the
last assertion of Lemma 8.7, the cone of the morphism GGG • −→ NNN • is a complex in
Y–tors which becomes contractible (hence coacyclic) after applying the direct image
functor π∗ : Y–tors −→ X–tors.

On the other hand, by Lemma 8.6, the complex GGG • can be obtained from the
complexes (π∗π∗)

n+1(NNN •), n ≥ 0, using the operations of shift, cone, countable co-
product, and the passage to a homotopy equivalent complex. By Lemma 8.9(b),
the complex (π∗π∗)

n+1(NNN •) is a homotopy Y/X-flat complex of quasi-coherent tor-
sion sheaves on Y. According to Lemma 8.9(a), it follows that the complex GGG • is
homotopy Y/X-flat. �
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8.3. Left derived tensor products for pro-sheaves flat over a base. Let
π : Y −→ X be a flat affine morphism of reasonable ind-schemes. The left derived
functor of tensor product of X-flat pro-quasi-coherent pro-sheaves on Y

(36) ⊗Y,L : D(YX–flat)× D(YX–flat) −−→ D(YX–flat)

is constructed in the following way.
Let P• and Q• ∈ C(YX–flat) be two complexes of X-flat pro-quasi-coherent

pro-sheaves on Y. Using Proposition 8.8, choose two morphisms of complexes of
X-flat pro-quasi-coherent pro-sheaves F• −→ P• and G• −→ Q• such that the
cones of both morphisms are acyclic in YX–flat, and both the complexes F• and
G• ∈ C(Y–flat) are relatively homotopy flat complexes of flat pro-quasi-coherent
pro-sheaves on Y. Then, by condition (i) in the definition of a relatively homotopy
flat complex, both the induced morphisms

P• ⊗Y G• ←−− F• ⊗Y G• −−→ F• ⊗Y Q•

have cones acyclic in YX–flat. So we put

P• ⊗Y,L Q• = F• ⊗Y G• 'P• ⊗Y G• ' F• ⊗Y Q• ∈ D(YX–flat).

Using the definition of a relatively homotopy flat complex again, the complex
P• ⊗Y G• is acyclic in YX–flat whenever the complex P• is acyclic in YX–flat,
and the complex F• ⊗Y Q• is acyclic in YX–flat whenever the complex Q• is. So
the derived functor ⊗Y,L is well-defined. We refer to [40, Lemma 2.7] for an abstract
formulation of this kind of construction of balanced derived functors of two arguments
(which is applicable in a much more general context of two-sided derived functors).

Remark 8.11. If one is only interested in the derived functor ⊗Y,L defined above
(and not in the derived functor ⊗L

Y, which we will define immediately below), then
one can harmlessly drop condition (ii) from the definition of a relatively homotopy
flat complex. Then the assumption that the ind-schemes X and Y are reasonable is
not needed in the above construction.

Remark 8.12. Let us emphasize that the underived tensor product P⊗YQ of two
X-flat pro-quasi-coherent pro-sheaves P and Q on Y need not be X-flat. It is only
the derived tensor product P• ⊗Y Q• of two complexes of X-flat pro-quasi-coherent
pro-sheaves P• and Q• that is well-defined as an object of the derived category of
X-flat pro-quasi-coherent pro-sheaves D(YX–flat). This is the reason why we had to
assume our relatively homotopy flat complexes to be complexes of flat (and not just
X-flat) pro-quasi-coherent pro-sheaves in the definition given in Section 8.2.

This subtlety was overlooked in the exposition in [47, Section 6]. In the context
of [47], a commutative ring homomorphism A −→ R was considered, with the as-
sumption thatR is a flatA-module. Then the tensor product of twoA-flatR-modules,
taken over R, need not be A-flat. It is only the tensor product of an R-flat R-module
and an A-flat R-module that is always A-flat. To correct the mistake, one needs to
include the assumption of termwise flatness over R into the definition of a “relatively
homotopy R-flat complex” in the proof of [47, Proposition 6.3] and the formulation
of [47, Lemma 6.4].
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Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X be a flat affine
morphism of ind-schemes. The left derived functor of tensor product of X-flat pro-
quasi-coherent pro-sheaves and quasi-coherent torsion sheaves on Y

(37) ⊗L
Y : D(YX–flat)× Dsi

X(Y–tors) −−→ Dsi
X(Y–tors)

is constructed in the following way.
Let P• ∈ C(YX–flat) be a complex of X-flat pro-quasi-coherent pro-sheaves and

NNN • ∈ C(Y–tors) be a complex of quasi-coherent torsion sheaves on Y. Using
Proposition 8.8, choose a morphism of complexes of X-flat pro-quasi-coherent pro-
sheaves F• −→ P• whose cone is acyclic in YX–flat, while F• ∈ C(Y–flat) is a
relatively homotopy flat complex of flat pro-quasi-coherent pro-sheaves on Y. Using
Proposition 8.10, choose a morphism of complexes of quasi-coherent torsion sheaves
GGG • −→NNN • whose cone has the property that its direct image is coacyclic in X–tors,
while GGG • ∈ C(Y–tors) is a homotopy Y/X-flat complex of quasi-coherent torsion
sheaves on Y. Then, by condition (ii) in the definition of a relatively homotopy flat
complex, and by the definition of a homotopy Y/X-flat complex, both the induced
morphisms

P• ⊗Y GGG • ←−− F• ⊗Y GGG • −−→ F• ⊗Y NNN •

have cones whose direct images are coacyclic in X–tors. So we put

P• ⊗L
Y NNN • = F• ⊗Y GGG • 'P• ⊗Y GGG • ' F• ⊗Y NNN • ∈ Dsi

X(Y–tors).

Using the definition of a homotopy Y/X-flat complex again, the complex π∗(P
•⊗Y

GGG •) is coacyclic in X–flat whenever the complex P• is acyclic in YX–flat. Using
condition (ii) from the definition of a relatively homotopy flat complex, the complex
π∗(F

• ⊗Y NNN •) is coacyclic in X–flat whenever the complex π∗NNN
• is coacyclic in

X–flat. Thus the derived functor ⊗L
Y is well-defined. This construction of a derived

functor of two arguments is also a particular case of [40, Lemma 2.7].
The derived functor ⊗Y,L (36) defines an (associative, commutative, and unital)

tensor triangulated category structure on the derived category D(YX–flat) of the
exact category of X-flat pro-quasi-coherent pro-sheaves on Y. The “pro-structure
pro-sheaf” OY ∈ Y–flat ⊂ YX–flat ⊂ D(YX–flat) is the unit object. (Notice that
the one-term complex OY is a relatively homotopy flat complex of flat pro-quasi-
coherent pro-sheaves on Y.)

The derived functor ⊗L
Y (37) defines a structure of triangulated module category

over the tensor triangulated category D(YX–flat) on the Y/X-semiderived category
Dsi

X(Y–tors) of quasi-coherent torsion sheaves on Y.

8.4. Construction of semitensor product. In this section, X is an ind-semi-
separated ind-Noetherian ind-scheme with a dualizing complex D•, and π : Y −→ X
is a flat affine morphism of ind-schemes.

The following lemma may help the reader feel more comfortable.

Lemma 8.13. (a) In the assumptions above, condition (ii) from the definition of a
relatively homotopy flat complex of flat pro-quasi-coherent pro-sheaves in Section 8.2
implies condition (i).
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(b) In the same assumptions, let F• be a relatively homotopy flat complex of
flat pro-quasi-coherent pro-sheaves on Y. Then the complex π∗D• ⊗Y F• of quasi-
coherent torsion sheaves on Y is homotopy Y/X-flat.

Proof. Both the assertions are based on the associativity property of the action of
the tensor category C(Y–pro) in its module category C(Y–tors).

Part (a): let G• ∈ C(Y–flat) be a complex of flat pro-quasi-coherent pro-sheaves
on Y satisfying (ii), and let P• ∈ C(YX–flat) be a complex of X-flat pro-quasi-
coherent pro-sheaves on Y which is acyclic in YX–flat. Then, according to the
proof of Theorem 7.15 in Section 7.3, the complex of quasi-coherent torsion sheaves
π∗D• ⊗Y P• has the property that its direct image π∗(π

∗D• ⊗Y P•) is coacyclic (in
fact, contractible) in X–tors. By condition (ii), it follows that the complex

(π∗D• ⊗Y P•)⊗Y G• ' π∗D• ⊗Y (P• ⊗Y G•)

has the same property, i. e., the compex π∗(π
∗D•⊗YP•⊗YG•) is coacyclic in X–tors.

Now the assertion of Theorem 7.15 implies that the complex P• ⊗Y G• is acyclic in
YX–flat, since the corresponding object vanishes in Dsi

X(Y–tors).
Part (b): let Q• ∈ C(YX–flat) a complex of X-flat pro-quasi-coherent pro-sheaves

on Y which is acyclic in YX–flat. Then we have

(π∗D• ⊗Y F•)⊗Y Q• ' π∗D• ⊗Y (F• ⊗Y Q•)

in C(Y–tors). By condition (i), the complex F•⊗YQ• is acyclic in YX–flat. Accord-
ing to the proof of Theorem 7.15, it follows that the complex π∗(π

∗D•⊗YF•⊗YQ•)
is coacyclic in X–tors, as desired. �

The triangulated equivalence π∗D•⊗Y− : D(YX–flat) −→ Dsi
X(Y–tors) is an equiv-

alence of module categories over the tensor category D(YX–flat). Indeed, let P•

and Q• be two complexes of X-flat pro-quasi-coherent pro-sheaves on Y, and let
F• −→P• and G• −→Q• be two morphisms of complexes with the cones acyclic in
YX–flat and relatively homotopy flat complexes of flat pro-quasi-coherent pro-sheaves
F• and G• on Y. Then the desired natural isomorphism

(P• ⊗Y,L Q•)⊗Y π∗D• ' P• ⊗L
Y (Q• ⊗Y π∗D•)

in the semiderived category Dsi
X(Y–tors) is represented by any one of the associativity

isomorphisms

(F• ⊗Y Q•)⊗Y π∗D• ' F• ⊗Y (Q• ⊗Y π∗D•),

(P• ⊗Y G•)⊗Y π∗D• ' P• ⊗Y (G• ⊗Y π∗D•),

or
(F• ⊗Y G•)⊗Y π∗D• ' F• ⊗Y (G• ⊗Y π∗D•)

in the category of complexes C(Y–tors). Notice that the complex G• ⊗Y π∗D• is
homotopy Y/X-flat by Lemma 8.13(b).

Using the triangulated equivalence D(YX–flat) ' Dsi
X(Y–tors), we transfer the

tensor structrue of the category D(YX–flat) to the category Dsi
X(X–tors). The resulting
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functor

(38) ♦π∗D• : Dsi
X(Y–tors)× Dsi

X(Y–tors) −−→ Dsi
X(Y–tors),

defining a tensor triangulated category structure on the semiderived category
Dsi

X(Y–tors), is called the semitensor product of complexes of quasi-coherent torsion
sheaves on Y over the inverse image π∗D• of the dualizing complex D•. The object
π∗D• ∈ Dsi

X(Y–tors) is the unit object of the tensor structure ♦π∗D• on Dsi
X(Y–tors),

since π∗D• corresponds to the unit object OY ∈ D(YX–flat) under the equivalence
of categories D(YX–flat) ' Dsi

X(Y–tors).
Explicitly, let MMM • and NNN • ∈ K(Y–tors) be two complexes endowed with mor-

phisms MMM • −→KKK • and NNN • −→JJJ • into complexes KKK • and JJJ • ∈ K(Y–torsX-inj)
with cones whose direct images are coacyclic in X–tors. Then one has

MMM • ♦π∗D• NNN • = π∗D• ⊗Y (HomY-qc(π
∗D•,KKK •)⊗Y,L HomY-qc(π

∗D•,JJJ •))

' HomY-qc(π
∗D•,KKK •)⊗L

Y NNN • ' HomY-qc(π
∗D•,JJJ •)⊗L

Y MMM •.

Let FFF • −→ MMM • and GGG • −→ NNN • be two morphisms in K(Y–tors) whose cones’
direct images are coacyclic in X–tors, while FFF • and GGG • are homotopy Y/X-flat
complexes of quasi-coherent torsion sheaves on Y. Then the semiderived category
object MMM • ♦π∗D• NNN • ∈ Dsi

X(Y–tors) is represented by any one of the two complexes

HomY-qc(π
∗D•,KKK •)⊗Y GGG • or FFF • ⊗Y HomY-qc(π

∗D•,JJJ •)

of quasi-coherent torsion sheaves on Y.

8.5. The ind-Artinian base example. In this section we discuss flat affine mor-
phisms of ind-schemes π : Y −→ X, where X is an ind-Artinian ind-scheme of ind-
finite type over a field (as in Examples 5.4).

(1) Let C be a coassociative coalgebra over a field k. A (semiassociative, semiuni-
tal) semialgebra SSS over C is defined as an associative, unital algebra object in the
(associative, unital, noncommutative) tensor category of C -C -bicomodules.

Let SSS be a semialgebra over C . A left semimodule over SSS is defined as a module
object in the module category of left C -comodules over the algebra object SSS in the
tensor category of C -C -bicomodules. Right semimodules are defined similarly [40,
Sections 0.3.2 and 1.3.1], [45, Section 2.6].

The category of left SSS -semimodules, which we will denote by SSS –simod, is
abelian whenever SSS is an injective right C -comodule. In this case, SSS –simod is a
Grothendieck abelian category. The category of right SSS -semimodules is denoted by
simod–SSS .

(2) We are interested in semicommutative semialgebras, which are a particular case
of (1). Let C be a cocommutative coalgebra over k. Then, following Example 5.4(2),
the category of C -comodules C –comod is an associative, commutative, and unital
tensor category with respect to the cotensor product operation �C . In fact, C –comod
is a tensor subcategory in the tensor category of C -C -bicomodules (consisting of those
bicomodules in which the left and right C -coactions agree).
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A semicommutative semialgebra SSS over C is defined as a commutative (associative,
and unital) algebra object in the tensor category C –comod. In other words, SSS is an
C -comodule endowed with a semiunit map C −→ SSS and a semimultiplication map
SSS �C SSS −→ SSS . Both the maps must be C -comodule morphisms, and the usual
associativity, commutativity, and unitality equations should be satisfied.

Over a semicommutative semialgebra SSS , there is no difference between left and
right semimodules.

(3) More specifically, we are interested in C -injective semicommutative semialge-
bras SSS over C . So the underlying C -comodule of SSS is assumed to be injective.
Injective C -comodules form a tensor subcategory in C –comod.

For a cocommutative coalgebra C , the category of C -contramodules is also natu-
rally an (associative, commutative, and unital) tensor category with respect to the
operation of contramodule tensor product ⊗C = ⊗C ∗ [43, Section 1.6]. The free
C -contramodule with one generator C ∗ is the unit object. The full subcategory of
projective C -contramodules C –contraproj ⊂ C –contra is a tensor subcategory.

The equivalence between the additive categories of injective C -comodules and
projective C -contramodules C –comodinj ' C –contraproj (see formula (16) in Exam-
ple 5.4(6)) is an equivalence of tensor categories.

(4) Let X = Spi C ∗ be the ind-Artinian ind-scheme corresponding to the coalgebra
C , as in Examples 1.5(2), 4.1(2), and 5.4(5). According to Example 5.4(6), there is
an equivalence of additive categories X–flat ' C –contraproj. Moreover, similarly to
Example 3.8(4) (cf. Example 5.9), this is an equivalence of tensor categories.

We are interested in transformations of commutative algebra objects under the
equivalences of tensor categories above. Let SSS be a C -injective semicommutative
semialgebra over C , let S be the corresponding commutative algebra object in the
tensor category C –contraproj, and let A be the corresponding commutative algebra
object in the tensor category X–flat. Then the anti-equivalence of categories from
Proposition 3.12 assigns to A an ind-scheme Y = SpiX A together with a flat affine
morphism of ind-schemes π : Y −→ X. Let us describe the ind-scheme Y and the
morphism π more explicitly.

For any algebra object S in the tensor category C –contra, precomposing the mul-
tiplication morphism S⊗C ∗ S −→ S with the natural map S⊗C ∗ S −→ S⊗C ∗ S
allows to define the underlying C ∗-algebra structure on S. Moreover, any projective
C -contramodule F has a natural underlying structure of a complete, separated topo-
logical module over a topological ring C ∗; for a free C -contramodule F = Homk(C , V )
spanned by a k-vector space V , this is the usual topology on the Hom space of
infinite-dimensional vector spaces. For an algebra object S in the tensor category
C –contraproj, this topology makes S a complete, separated topological ring with a
base of neighborhoods of zero formed by open (two-sided) ideals. The unit morphism
of S provides a continuous ring homomorphism C ∗ −→ S.

In the situation at hand, S = HomC (C ,SSS ) = HomC ∗(C ,SSS ) is the k-vector
space of C -comodule (or equivalently, C ∗-module) homomorphisms C −→ SSS . The
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topology on S is the finite topology of the Hom module: the annihilators of finite-
dimensional subspaces (equivalently, finite-dimensional subcoalgebras) in C form a
base of neighborhoods of zero in HomC (C ,SSS ). The semiunit map C −→ SSS in-
duces the unit map C ∗ ' HomC (C ,C ) −→ HomC (C ,SSS ), which is a continuous
ring homomorphism C ∗ −→S. Then one has Y = SpiS in the notation of Exam-
ple 1.6(1); the flat affine morphism π : Y −→ X corresponds to the homomorphism
of topological rings C ∗ −→S.

For any cocommutative coalgebra C over k and the corresponding ind-Artinian
ind-scheme X = Spi C ∗, we have constructed a natural anti-equivalence between the
category of C -injective semicommutative semalgebras SSS over C and the category of
ind-schemes Y endowed with a flat affine morphism Y −→ X.

(5) We keep the notation of (4). According to Proposition 3.13(b), the abelian
category Y–tors is equivalent to the category of module objects in the module cat-
egory X–tors over the algebra object A in the tensor category X–flat. Following
Section 2.4(4), we have an equivalence of categories X–tors ' C –comod. Hence
the category Y–tors is equivalent to the category of module objects in the module
category C –comod over the algebra object S in the tensor category C –contraproj.
Here the action of C –contraproj in C –comod is given by the contratensor product
functor �C (see the last paragraph of Example 5.4(6)).

The equivalence of tensor categories C –comodinj ' C –contraproj transforms the
action of C –comodinj in C –comod (by the cotensor product) into the action of
C –contraproj in C –comod (by the contratensor product). This is clear from the
associativity isomorphism connecting the cotensor and contratensor products [40,
Proposition 5.2.1], [45, Proposition 3.1.1], which was already mentioned in Ex-
ample 5.4(8). Taken together, the constructions above combine into a natural
equivalence between the abelian category of quasi-coherent torsion sheaves on Y
and the abelian category of SSS -semimodules, Y–tors 'SSS –simod.

A quasi-coherent torsion sheaf on Y is X-injective if and only if the corresponding
SSS -semimodule is injective as a C -comodule. We will denote the full subcategory of
semimodules whose underlying comodules are injective by SSS –simodC -inj ⊂SSS –simod.
So the equivalence of abelian categories Y–tors 'SSS –simod restricts to an equivalence
of full subcategories Y–torsX-inj ' SSS –simodC -inj. The latter one is obviously an
equivalence of exact categories (with the exact category structures inherited from the
ambient abelian categories).

(6) According to Proposition 3.13(a) and the discussion in Section 7.2, the exact
category YX–flat of X-flat pro-quasi-coherent pro-sheaves on Y is equivalent to the
exact category of module objects over the algebra object A in the tensor category
X–flat. As the tensor category X–flat is equivalent to the tensor category C –contraproj

by (4), it follows that the exact category YX–flat is equivalent to the exact category
of module objects over the algebra object S in the tensor category C –contraproj. Here
the exact structure on X–flat ' C –contraproj is split, but the exact structure on the
category of module objects is not; rather, a short sequence of module objects is exact
if and only if it becomes split exact after the module structures are forgotten.
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One can see that specifying a module structure over S on a given projective
C -contramodule F is equivalent to specifying a SSS -semicontramodule structure on
F (see [40, Sections 0.3.5 and 3.3.1] or [45, Section 2.6] for the definition). So
the exact category YX–flat is equivalent to the exact category of C -projective
SSS -semicontramodules. Semicontramodules over an C -injective semialgebra SSS form
an abelian category SSS –sicntr; we will denote the full subcategory of C -injective semi-
contramodules by SSS –sicntrC -proj ⊂ SSS –sicntr. The exact structure on SSS –sicntrC -proj

is inherited from the abelian category SSS –sicntr. So we have an equivalence of exact
categories YX–flat 'SSS –sicntrC -proj.

(7) It is explained in [54, Section 10.3] that the datum of an SSS -semicontramodule
structure on a given vector space (or C -contramodule) is equivalent to the datum of
a contramodule structure over the topological ring S, that is SSS –sicntr 'S–contra.
It follows that the exact category YX–flat is equivalent to the exact category of
S-contramodules which are projective as contramodules over the topological ring C ∗,
i. e., YX–flat ' S–contraC ∗-proj. The latter equivalence restricts to an equivalence
between the category of flat pro-quasi-coherent pro-sheaves on Y and the category
of flat S-contramodules (in the sense of [52, Section 2]), Y–flat 'S–flat.

Furthermore, the datum of an SSS -semimodule structure on a given vector space
(or C -comodule) is equivalent to the datum of a discrete S-module structure,
SSS –simod ' S–discr [54, Remark 10.9]. Consequently, we have a natural equiva-
lence of abelian categories Y–tors 'S–discr.

The equivalences of categories Y–flat ' S–flat and YX–flat ' S–contraC ∗-proj

from (7) transform the tensor product functor ⊗Y : Y–flat ×YX–flat −→ YX–flat
into the contramodule tensor product functor ⊗S : S–contra × S–contra −→
S–contra (as defined in [43, Section 1.6]), restricted to the full subcategories
S–flat ⊂ S–contraC ∗-proj ⊂ S–contra. The equivalences of categories YX–flat '
S–contraC ∗-proj and Y–tors ' S–discr from (7) transform the tensor product
functor ⊗Y : YX–flat × Y–tors −→ Y–tors into the contratensor product functor
�S : S–contra×S–discr −→S–discr restricted to S–contraC ∗-proj ⊂S–contra (see
the discussion and references in Example 3.8(3)).

The equivalences of categories YX–flat ' SSS –sicntrC -proj and Y–tors ' SSS –simod
from (6) and (5) transform the tensor product functor ⊗Y : YX–flat ×Y–tors −→
Y–tors into the functor of contratensor product of semimodules and semicontramod-
ules }SSS : SSS –sicntr × SSS –simod −→ SSS –simod (constructed in [40, Sections 0.3.7
and 6.1]), restricted to the full subcategory SSS –sicntrC -proj ⊂SSS –sicntr.

(8) As explained in Example 5.4(5), the C -comodule C corresponds to a one-
term dualizing complex of injective quasi-coherent torsion sheaves D• = C on the
ind-Artinian ind-scheme X = Spi C ∗.

Following the proof of Theorem 7.15 specialized to the particular case of a one-
term dualizing complex of injectives D• = C on X, one can see that there is an
equivalence between the exact categories of X-injective quasi-coherent torsion sheaves
and X-flat pro-quasi-coherent pro-sheaves on Y, provided by the mutually inverse
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functors HomY-qc(π
∗C ,−) and π∗C ⊗Y −,

(39) HomY-qc(π
∗C ,−) : Y–torsX-inj ' YX–flat :π∗C ⊗Y −.

The equivalence of exact categories Y–torsX-inj ' SSS –simodC -inj and YX–flat '
SSS –sicntrC -proj from items (5) and (6) form a commutative square diagram with the
equivalence (39) and the equivalence of exact categories

(40) HomSSS (SSS ,−) : SSS –simodC -inj ' SSS –sicntrC -proj :SSS }SSS −,
which was constructed in [40, Sections 0.3.7 and 6.2] and discussed in [45, Section 3.5].
Here HomSSS = HomSSS –simod denoted the vector space of morphisms in the abelian
category of SSS -semimodules, while }SSS is the contratensor product functor men-
tioned in (7) above. Notice that the quasi-coherent torsion sheaf π∗C = π∗D•

on Y corresponds to the SSS -semimodule SSS under the equivalence of categories
Y–tors 'SSS –simod (or Y–torsX-inj 'SSS –simodC -inj).

(9) Given a semiassociative semialgebra SSS over a coassociative coalgebra C , the
semitensor product MMM ♦SSS NNN of a right SSS -semimodule MMM and a left SSS -semimodule
NNN is the k-vector space constructed as the cokernel of the difference of the natural
pair of maps

MMM �C SSS �C NNN ⇒ MMM �C NNN .

Here one map is induced by the right semiaction map MMM �C SSS −→MMM and the other
one by the left semiaction map SSS �C NNN −→NNN [40, Sections 0.3.2 and 1.4.1–2] (cf.
the definition of the cotensor product �C in Example 5.4(1) above).

Let SSS be a semicommutative semialgebra over a cocommutative coalgebra C ;
assume that SSS is an injective C -comodule. Then the semitensor product MMM ♦SSS

NNN of two SSS -semimodules MMM and NNN has a natural SSS -semimodule structure [40,
Section 1.4.4]. The semitensor product operation ♦SSS on the category SSS –simod is
commutative and unital; the SSS -semimodule SSS is the unit object.

However, one needs to impose some additional assumptions in order to make sure
that the semitensor product is associative. The semitensor product of any three
C -injective SSS -semimodules is associative [40, Proposition 1.4.4(a)], but the full sub-
category SSS –simodC -inj ⊂SSS –simod is not preserved by ♦SSS , generally speaking. The
full subcategory of so-called semiflat SSS -semimodules (defined in [40, Section 1.4.2]) is
a commutative, associative, and unital tensor category with respect to the semitensor
product over SSS .

(10) For a semiassociative semialgebra SSS over a coassociative coalgebra C , the
double-sided derived functor of semitensor product

SemiTorSSS : Dsi(simod–SSS )× Dsi(SSS –simod) −−→ D(k–vect)

is constructed in [40, Section 2.7]. Here Dsi(SSS –simod) = Dsi
C (SSS –simod) is the semi-

derived (or the “semicoderived”) category of left SSS -semimodules relative to C , i. e.,
the triangulated quotient category of the homotopy category K(SSS –simod) by the
thick subcategory of complexes that are coacyclic as complexes of C -comodules. The
semiderived category Dsi(simod–SSS ) = Dsi

C (simod–SSS ) is defined similarly.
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A construction of the double-sided derived functor of semitensor product of bisemi-
modules, taking values in a semiderived category of bisemimodules, can be found
in [40, Section 2.9]. As one can use (strongly semiflat complexes of) semiflat bisemi-
modules in the construction of this derived functor, the double-sided derived functor
of semitensor product of bisemimodules is associative.

Similarly, for a semicommutative semialgebra SSS over a cocommutative coalgebra
C , one can construct the double-sided derived functor of semitensor product

(41) ♦DSSS : Dsi(SSS –simod)× Dsi(SSS –simod) −−→ Dsi(SSS –simod),

which defines a structure of associative, commutative, and unital tensor category on
the triangulated category Dsi(SSS –simod). The one-term complex of SSS -semimodules
SSS is the unit object.

The equivalence of abelian categories Y–tors ' SSS –simod from item (5) forms a
commutative square diagram with the equivalence of abelian categories X–tors '
C –comod, the direct image functor π∗ : Y–tors −→ X–tors, and the forgetful functor
SSS –simod −→ C –comod. Therefore, a triangulated equivalence of the semiderived
categories Dsi

X(Y–tors) ' Dsi(SSS –simod) is induced.
The result of [40, Corollary 6.6(b)] together with the discussion in items (7–8) above

shows that the triangulated equivalence Dsi
X(Y–tors) ' Dsi(SSS –simod) transforms the

semitensor product functor ♦π∗D• (38) from Section 8.4 for the dualizing complex
D• = C on X into the double-sided derived functor ♦DSSS (41).

9. Flat Affine Ind-Schemes over Ind-Schemes of Ind-Finite Type

In this section, as in Section 6, k denotes a fixed ground field. Let X be an ind-
separated ind-scheme of ind-finite type over k, and let π : Y −→ X be a flat affine
morphism of schemes. Consider the diagonal morphism ∆Y : Y −→ Y ×k Y; the
morphism ∆Y factorizes naturally into the composition

Y
δ−−→ Y×X Y

η−−→ Y×k Y.

We denote the two morphisms involved by δ = δY/X : Y −→ Y ×X Y and η =
ηY/X : Y×X Y −→Y×k Y.

Let D• be a rigid dualizing complex on X (as defined in Section 6.5). The aim
of this section is to describe the semitensor product functor ♦π∗D• : Dsi

X(Y–tors) ×
Dsi

X(Y–tors) −→ Dsi
X(Y–tors) as the composition of the left derived ∗-restriction and

the right derived !-restriction of the external tensor product on Y×kY to the closed
immersions δY/X and ηY/X, resprectively; that is

MMM • ♦π∗D• NNN • = Lδ∗Rη!(MMM • �k NNN •)

for any two complexes of quasi-coherent torsion sheaves MMM • and NNN • on Y.
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9.1. Derived inverse image of pro-sheaves. Suppose that we are given a com-
mutative square diagram of morphisms of ind-schemes

(42)

W
g
//

ρ

��

Y

π

��

Z
f
// X

Assume that the morphisms π and ρ are flat and affine, and the ind-scheme X is
ind-Noetherian. The aim of this Section 9.1 is to construct the left derived functor
of inverse image

(43) Lg∗ : D(YX–flat) −−→ D(WZ–flat)

acting from the derived category of the exact category of X-flat pro-quasi-coherent
pro-sheaves on Y to the derived category of the exact category of Z-flat pro-quasi-
coherent pro-sheaves on W.

Lemma 9.1. Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X be a flat
affine morphism of ind-schemes. Let F• be a relatively homotopy flat complex of flat
pro-quasi-coherent pro-sheaves on Y (as defined in Section 8.2). Assume that the
complex F• is acyclic in the exact category YX–flat. Then, for any complex of quasi-
coherent torsion sheaves MMM • on Y, the complex of quasi-coherent torsion sheaves
π∗(F

• ⊗Y MMM •) on X is coacyclic.

Proof. This assertion is implicit in the construction of the derived functor ⊗L
Y (37)

in Section 8.3. Explicitly, by Proposition 8.10 there exists a homotopy Y/X-flat
complex GGG • of quasi-coherent torsion sheaves on Y together with a morphism of
complexes GGG • −→MMM • whose cone NNN • has the property that its direct image under π
is coacyclic in X–tors. Then the complex π∗(F

• ⊗Y GGG •) is coacyclic in X–tors, since
the complex F• is acyclic in YX–flat and the complex GGG • is homotopy Y/X-flat.
Furthermore, the complex π∗(F

• ⊗Y NNN •) is also coacyclic in X–tors, since F• be a
relatively homotopy flat complex of flat pro-quasi-coherent pro-sheaves on Y and the
complex π∗(NNN

•) is coacyclic in X–tors (see condition (ii) in Section 8.2). It follows
that the complex π∗(F

• ⊗Y MMM •) is coacyclic in X–tors. �

Proposition 9.2. Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X be
a flat affine morphism of ind-schemes. Let F• be a relatively homotopy flat complex
of flat pro-quasi-coherent pro-sheaves on Y. Assume that the complex F• is acyclic
in the exact category YX–flat of X-flat pro-quasi-coherent pro-sheaves on Y. Then
the complex F• is also acyclic in the exact category Y–flat of flat pro-quasi-coherent
pro-sheaves on Y.

Proof. Let X ⊂ X be a closed subscheme with the closed immersion morphism
i : X −→ X. Put Y = X ×X Y, and denote by k : Y −→ Y the natural closed
immersion. In view of Lemma 4.13, it suffices to show that the complex k∗F• is
acyclic in Y–flat. For this purpose, we will show that the complex of quasi-coherent
sheaves k∗F• ⊗OY

N on Y is acyclic for any quasi-coherent sheaf N on Y.
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Since Y is a scheme, we can consider N as a quasi-coherent torsion sheaf on Y;
then k∗F• ⊗OY

N = k∗F• ⊗Y N is viewed as a complex of quasi-coherent torsion
sheaves on Y. As the functor k∗ : Y–qcoh −→ Y–tors is exact and faithful (see
Lemma 2.16(a)), acyclicity of this complex is equivalent to acyclicity of the complex
k∗(k

∗F• ⊗Y N ) in Y–tors. By Lemma 8.2, we have an isomorphism in C(Y–tors)

k∗(k
∗F• ⊗Y N ) ' F• ⊗Y k∗N .

By Lemma 9.1, the complex π∗(F
• ⊗Y k∗N ) is coacyclic, hence acyclic, in X–tors.

As the functor π∗ : Y–tors −→ X–tors is exact and faithful by Lemma 7.2, it follows
that the complex F• ⊗Y k∗N is acyclic in Y–tors. �

The following corollary plays the key role.

Corollary 9.3. In the context of diagram (42), let F• be a relatively homotopy flat
complex of flat pro-quasi-coherent pro-sheaves on Y. Assume that the complex F•

is acyclic in the exact category YX–flat. Then the complex g∗F• of flat pro-quasi-
coherent pro-sheaves on W is acyclic in the exact category WZ–flat.

Proof. By Proposition 9.2, the complex F• is acyclic in Y–flat. As the direct image
functor g∗ : Y–flat −→W–flat is exact, it follows immediately that the complex g∗F•

is acyclic in W–flat, hence also in WZ–flat. �

Using Proposition 8.8 and Corollary 9.3, the left derived functor (43) can be
constructed following the general approach of a “derived functor in the sense of
Deligne” [11, 1.2.1–2], [40, Lemma 6.5.2].

Let P• be a complex of X-flat pro-quasi-coherent pro-sheaves on Y. By Propo-
sition 8.8, there exists a relatively homotopy flat complex of flat pro-quasi-coherent
pro-sheaves F• on Y together with a morphism of complexes F• −→P• whose cone
is acyclic in YX–flat. Put

Lg∗(P•) = g∗(F•) ∈ D(WZ–flat).

Notice that g∗(F•) is a complex of flat pro-quasi-coherent pro-sheaves on W (see
Section 3.4); hence it is also a complex of Z-flat pro-quasi-coherent pro-sheaves on
W, as the morphism ρ is flat and affine by assumption (as per the discussion in
Section 7.2).

Let a : P• −→ Q• be a morphism of complexes of X-flat pro-quasi-coherent pro-
sheaves on Y, and let F• −→ P• and G• −→ Q• be two morphisms in C(YX–flat)
with the cones acyclic in YX–flat such that both the complexes F• and G• are
relatively homotopy flat complexes of flat pro-quasi-coherent pro-sheaves on Y. In
order to construct the induced morphism

Lg∗(a) : g∗(F•) −−→ g∗(G•)

in D(WZ–flat), choose a complex R• in YX–flat together with morphisms R• −→ F•

and R• −→ G• in C(YX–flat) such that the diagram R• −→ F• −→ P• −→ Q•

and R• −→G• −→Q• is commutative in K(YX–flat) and the cone of the morphism
R• −→ F• is acyclic in YX–flat. Using Proposition 8.8, choose a relatively homotopy
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flat complex of flat pro-quasi-coherent pro-sheaves H• on Y together with a morphism
of complexes H• −→R• whose cone is acyclic in YX–flat.

Then the cone S• of the composition s : H• −→ R• −→ F• is a relatively ho-
motopy flat complex of flat pro-quasi-coherent pro-sheaves on Y which is acyclic in
YX–flat. By Corollary 9.3, the complex g∗(S•) is acyclic in WZ–flat. Denote by b
the composition H• −→ R• −→ G•. Now the fraction formed by the morphism
g∗(b) : g∗(H•) −→ g∗(G•) and the isomorphism g∗(s) : g∗(H•) −→ g∗(F•) represents
the desired morphism Lg∗(a) : g∗(F•) −−→ g∗(G•) in D(WZ–flat).

9.2. Derived inverse image of torsion sheaves. Suppose that we are given a
commutative triangle diagram of morphisms of ind-schemes

(44)

W
g

//

ρ
  

Y

π
��

X

Assume that the morphisms π and ρ are flat and affine, and the ind-scheme X is
ind-Noetherian. The aim of Section 9.2 is to construct the left derived functor of
inverse image

(45) Lg∗ : Dsi
X(Y–tors) −−→ Dsi

X(W–tors)

acting from the Y/X-semiderived category of quasi-coherent torsion sheaves on Y
to the W/X-semiderived category of quasi-coherent torsion sheaves on W.

Lemma 9.4. Let X be an ind-Noetherian ind-scheme, and let π : Y −→ X be a flat
affine morphism of ind-schemes. Let GGG • be a homotopy Y/X-flat complex of quasi-
coherent torsion sheaves on Y (as defined in Section 8.2). Assume that the complex
π∗(GGG

•) of quasi-coherent torsion sheaves on X is coacyclic. Then, for any complex
of Y/X-flat pro-quasi-coherent pro-sheaves P• on Y, the complex of quasi-coherent
torsion sheaves π∗(P

• ⊗Y GGG •) on X is coacyclic.

Proof. Similarly to Lemma 9.1, this assertion is implicit in the construction of the
derived functor ⊗L

Y (37) in Section 8.3. Explicitly, by Proposition 8.8 there exists
a relatively homotopy flat complex of flat pro-quasi-coherent pro-sheaves F• on Y
together with a morphism of complexes F• −→ P• whose cone Q• is acyclic in
YX–flat. Then the complex π∗(F

• ⊗Y GGG •) is coacyclic in X–tors, since F• is a rel-
atively homotopy flat complex of flat pro-quasi-coherent pro-sheaves on Y and the
complex π∗(GGG

•) is coacyclic in X–tors. Furthermore, the complex π∗(Q
• ⊗Y GGG •) is

coacyclic in X–tors, since the complex Q• is acyclic in YX–flat and GGG • is a homo-
topy Y/X-flat complex of quasi-coherent torsion sheaves on Y. It follows that the
complex π∗(P

• ⊗Y GGG •) is coacyclic in X–tors. �

The next proposition is the key technical assertion.

Proposition 9.5. In the context of the diagram (44), let FFF • be a homotopy Y/X-flat
complex of quasi-coherent torsion sheaves on Y. Assume that the complex π∗(FFF

•)
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of quasi-coherent torsion sheaves on X is coacyclic. Then the complex ρ∗g
∗(FFF •) of

quasi-coherent torsion sheaves on X is coacyclic, too.

Proof. Let us show that the morphism of ind-schemes g : W −→ Y is affine (when-
ever the morphisms π and ρ = πg are). First of all, the morphism g is “representable
by schemes” (since the morphisms π and ρ = πg are). Indeed, let X ⊂ X be
a closed subscheme. Then Y = X ×X Y is a closed subscheme in Y (and any
closed subscheme in Y is contained in a closed subscheme of this form). Therefore,
W = Y ×Y W = X ×X W is a closed subscheme in W.

We know that the morphisms of schemes Y −→ X and W −→ X are affine, and
we have to show that the morphism W −→ Y is. Let X =

⋃
α Uα be an affine open

covering of X. Then Y =
⋃
α(Uα ×X Y) is an affine open covering of Y; and the

schemes (Uα ×X Y)×Y W = Uα ×X W are affine (cf. [20, Tag 01SG]).
Now we have ρ∗g

∗(FFF •) ' π∗g∗g
∗(FFF •), since ρ = πg. Furthermore, g∗FFF • '

OW ⊗W g∗FFF •, where OW ∈ W–flat is the “pro-structure pro-sheaf” on W. By
Lemma 7.5,

g∗g
∗(FFF •) ' g∗(OW ⊗W g∗FFF •) ' g∗(OW)⊗Y FFF •.

Notice that the pro-quasi-coherent pro-sheaf g∗(OW) on Y is X-flat, because
π∗g∗(OW) ' ρ∗(OW) and the morphism of ind-schemes ρ : W −→ X is flat by
assumption, hence the direct image functor ρ∗ : W–pro −→ X–pro takes flat pro-
quasi-coherent pro-sheaves on W to flat pro-quasi-coherent pro-sheaves on X.
Applying Lemma 9.4, we conclude that the complex ρ∗g

∗(FFF •) ' π∗(g∗(OW)⊗YFFF •)
is coacyclic in X–tors. �

Similarly to Section 9.1, we use Propositions 8.10 and 9.5 in order to construct
the left derived functor (45) following the general approach of [11, 1.2.1–2] and [40,
Lemma 6.5.2].

Let MMM • be a complex of quasi-coherent torsion sheaves on Y. By Proposition 8.10,
there exists a homotopy Y/X-flat complex of quasi-coherent torsion sheaves FFF • on
Y together with a morphism of complexes FFF • −→MMM • whose cone has the property
that its direct image is coacyclic in X–tors. Put

Lg∗(MMM •) = g∗(FFF •) ∈ Dsi
X(W–tors).

The action of the functor Lg∗ on morphisms in Dsi
X(Y–tors) is constructed in the

same way as in Section 9.1 (we omit the obvious details).

9.3. Derived restriction with supports in the relative context. Suppose that
we are given a pullback diagram of morphisms of ind-schemes (so W = Z×X Y)

(46)

W
k
//

ρ

��

Y

π

��

Z
i
// X

Assume that the morphism π (hence also the morphism ρ) is flat and affine, the
morphism i (hence also the morphism k) is a closed immersion, and the ind-scheme
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X (hence also the ind-scheme Z) is ind-Noetherian. The aim of Section 9.3 is to
construct the right derived functor

(47) Rk! : Dsi
X(Y–tors) −−→ Dsi

Z(W–tors)

acting from the Y/X-semiderived category of quasi-coherent torsion sheaves on Y
to the W/Z-semiderived category of quasi-coherent torsion sheaves on W.

Lemma 9.6. In the context of the diagram (46), there is a natural isomorphism
i!π∗ ' ρ∗k

! of functors Y–tors −→ Z–tors.

Proof. Weaker assumptions than stated above are sufficient for the validity of this
lemma, which is an ind-scheme version of Lemma 2.3(a). It suffices to assume that
W = Z ×X Y, the morphism π (hence also ρ) is “representable by schemes”, and i
(hence also k) is a reasonable closed immersion.

Indeed, let NNN be a quasi-coherent torsion sheaf on Y, and let Z ⊂ Z be a reason-
able closed subscheme. Put W = Z ×Z W; so W is a reasonable closed subscheme
in W. The scheme Z can be also viewed as a reasonable closed subscheme in X, em-
bedded via i; and the scheme W can be viewed as a reasonable closed subscheme in
Y, embedded via k. Denote by ρZ : W −→ Z the natural morphism. In order to ob-
tain the desired isomorphism i!π∗NNN ' ρ∗k

!NNN in Z–tors, one constructs a compatible
system of isomorphisms in Z–qcoh

(i!π∗NNN )(Z) ' (π∗NNN )(Z) ' ρZ∗(NNN (W)) ' ρZ∗((k
!NNN )(W)) ' (ρ∗k

!NNN )(Z)

for all the reasonable closed subschemes Z ⊂ Z. (See the definition of the direct
image functor for quasi-coherent torsion sheaves in Section 2.6.) �

By Proposition 7.8, we have natural equivalences of triangulated categories
Dsi

X(Y–tors) ' D(Y–torsX-inj) and Dsi
Z(W–tors) ' D(W–torsZ-inj). We will use these

triangulated equivalences in order to construct the right derived functor (47).

Lemma 9.7. In the context of the diagram (46), the functor k! : Y–tors −→W–tors
restricts to an exact functor between exact categories Y–torsX-inj −→W–torsZ-inj.

Proof. The functor i! : X–tors −→ Z–tors, being right adjoint to an exact func-
tor i∗ : Z–tors −→ X–tors, takes injective objects to injective objects. In view of
Lemma 9.6, it follows that the functor k! : Y–tors −→ W–tors takes X-injective
quasi-coherent torsion sheaves to Z-injective ones.

Let 0 −→LLL −→MMM −→NNN −→ 0 be a short exact sequence of X-injective quasi-
coherent torsion sheaves on Y. Then 0 −→ π∗LLL −→ π∗MMM −→ π∗NNN −→ 0 is a split
short exact sequence of quasi-coherent torsion sheaves on X. Hence 0 −→ i!π∗LLL −→
i∗π∗MMM −→ i!π∗NNN −→ 0 is a split short exact sequence of quasi-coherent torsion
sheaves on Z. As ρ∗k

! ' i!π∗, it follows that 0 −→ k!LLL −→ k!MMM −→ k!NNN −→ 0 is
a short exact sequence of Z-injective quasi-coherent torsion sheaves on W (because
the functor ρ∗ : W–tors −→ Z–tors is exact and faithful by Lemma 7.2). �
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In view of Lemma 9.7, the functor k! : Y–torsX-inj −→W–torsZ-inj induces a well-
defined triangulated functor between the derived categories of the two exact cate-
gories,

k! : D(Y–torsX-inj) −−→ D(W–torsZ-inj).

Using the triangulated equivalences Dsi
X(Y–tors) ' D(Y–torsX-inj) and Dsi

Z(W–tors) '
D(W–torsZ-inj), we obtain the desired right derived functor (47). This construction is
also a particular case of the construction of [11, 1.2.1–2] or [40, Lemma 6.5.2], which
was used in Sections 9.1–9.2.

9.4. Composition of derived inverse images of pro-sheaves. Suppose that we
are given a composable pair of commutative square diagrams of morphisms of ind-
schemes

(48)

V
h
//

σ

��

W
g
//

ρ

��

Y

π

��

U
t
// Z

f
// X

Assume that the morphisms π, ρ, and σ are flat and affine, and the ind-schemes X
and Z are ind-Noetherian. Consider the composition of left derived functors (43)
constructed in Section 9.1

D(YX–flat)
Lg∗−−→ D(WZ–flat)

Lh∗−−→ D(VU–flat).

Proposition 9.8. There is a natural isomorphism Lh∗◦Lg∗ ' L(gh)∗ of triangulated
functors D(YX–flat) −→ D(VU–flat).

Proof. The related underived isomorphism is obvious: clearly, one has h∗g∗P• '
(gh)∗P• in C(V–pro) for any complex of pro-quasi-coherent pro-sheaves P• on Y.

The best possible argument for the proof of the composition of derived functors
being isomorphic to the derived functor of the composition would be to show that
the functor g∗ takes complexes adjusted to Lg∗ and L(gh)∗ to complexes adjusted
to Lh∗. In our context, this would mean showing that, for any relatively homotopy
flat complex of flat pro-quasi-coherent pro-sheaves F• on Y (relative to the morphism
π : Y −→ X), the complex of flat pro-quasi-coherent pro-sheaves g∗(F•) on W is also
relatively homotopy flat (relative to the morphism ρ : W −→ Z).

However, we do not know how to prove this preservation of relative homotopy
flatness in full generality. Instead, we will show that, given a complex P• in YX–flat,
a relatively homotopy flat complex F• endowed with a morphism F• −→ P• with
the cone acyclic in YX–flat can be chosed in such a way that the complex of flat
pro-quasi-coherent pro-sheaves g∗(F•) on W is a relatively homotopy flat complex.

Let us recall the construction of the relatively homotopy flat resolutions from
Proposition 8.8. All the complexes of flat pro-quasi-coherent pro-sheaves on Y which
can be obtained from the inverse images of complexes of flat pro-quasi-coherent pro-
sheaves on X using the operations of cone, infinite coproduct, and the passage to a
homotopy equivalent complex, are relatively homotopy flat (by Lemma 8.5); and any
complex P• ∈ C(YX–flat) admits a relatively homotopy flat resolution of this form.
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Assume that the complex F• is homotopy equivalent to a complex of flat pro-quasi-
coherent pro-sheaves on Y obtained from inverse images of complexes of flat pro-
quasi-coherent pro-sheaves on X using the operations of cone and infinite coproduct.
Then the complex g∗(F•) is homotopy equivalent to a complex of flat pro-quasi-
coherent pro-sheaves on W similarly obtained from the inverse images of complexes of
flat pro-quasi-coherent pro-sheaves on Z. This follows from the natural isomorphism
g∗π∗ ' ρ∗f ∗ of functors X–flat −→W–flat and the commutation of inverse images
of (flat) pro-quasi-coherent pro-sheaves with the coproducts. �

9.5. External tensor products in the relative context. Let X′ and X′′ be ind-
schemes over k, and let π′ : Y′ −→ X′ and π′′ : Y′′ −→ X′′ be affine morphisms of
schemes. Let π′ ×k π

′′ : Y′ ×k Y
′′ −→ X′ ×k X

′′ be the induced morphism of the
Cartesian products. Clearly, π′ ×k π

′′ is an affine morphism of ind-schemes.
The functor of external tensor product of pro-quasi-coherent pro-sheaves (19)

�k : Y′–pro×Y′′–pro −−→ (Y′ ×k Y
′′)–pro

was constructed in Section 6.2.

Lemma 9.9. Let Q′ be a pro-quasi-coherent pro-sheaf on Y′ and Q′′ be a pro-quasi-
coherent pro-sheaf on Y′′. Then there is a natural isomorphism

(π′ ×k π
′′)∗(Q

′ �k Q
′′) ' π′∗Q

′ �k π
′′
∗Q

′′

of pro-quasi-coherent pro-sheaves on X′ ×k X
′′.

Proof. Follows from Lemma 6.4. �

Lemma 9.10. (a) Let G′ be an X′-flat pro-quasi-coherent pro-sheaf on Y′ and G′′

be an X′′-flat pro-quasi-coherent pro-sheaf on Y′′. Then G′�kG
′′ is an (X′×kX

′′)-flat
pro-quasi-coherent pro-sheaf on Y′ ×k Y

′′.
(b) The external tensor product functor

(49) �k : Y′X′–flat×Y′′X′′–flat −−→ (Y′ ×k Y
′′)(X′×kX′′)–flat

is exact (as a functor between exact categories) and preserves direct limits (in partic-
ular, coproducts).

Proof. Part (a) follows from Lemma 9.9 and formula (20). Part (b) follows directly
from the definitions of the exact structures involved and Lemma 6.2. �

Lemma 9.11. Let G′• be a complex of X′-flat pro-quasi-coherent pro-sheaves on Y′

and G′′• be a complex of X′′-flat pro-quasi-coherent pro-sheaves on Y′′. Assume that
the complex G′• is acyclic in Y′X′–flat. Then the complex G′• �k G

′′• is acyclic in
(Y′ ×k Y

′′)(X′×kX′′)–flat.

Proof. The results of Lemmas 7.14 and 9.9 reduce the question to Lemma 6.9. �

It follows from Lemma 9.11 that the external tensor product of pro-quasi-coherent
pro-sheaves which are flat over the base is well-defined as a functor between the
derived categories of the respective exact categories,

(50) �k : D(Y′X′–flat)× D(Y′′X′′–flat) −−→ D((Y′ ×k Y
′′)(X′×kX′′)–flat).
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Now assume additionally that the ind-schemes X′ and X′′ are reasonable (then so
are the ind-schemes Y′ and Y′′). The functor of external tensor product of quasi-
coherent torsion sheaves (22)

�k : Y′–tors×Y′′–tors −−→ (Y′ ×k Y
′′)–tors

was constructed in Section 6.3.

Lemma 9.12. Let NNN ′• be a complex of quasi-coherent torsion sheaves on Y′ and
NNN ′′• be a complex of quasi-coherent torsion sheaves on Y′′. Assume that the complex
π′∗(NNN

′•) of quasi-coherent torsion sheaves on X′ is coacyclic. Then the complex
(π′ ×k π

′′)∗(NNN
′• �k NNN ′′•) of quasi-coherent torsion sheaves on X′ ×k X

′′ is coacyclic,
too.

Proof. Follows immediately from Lemmas 6.13 and 6.18. �

It is clear from Lemma 9.12 that the external tensor product is well-defined as a
functor between the semiderived categories of quasi-coherent torsion sheaves,

(51) �k : Dsi
X′(Y

′–tors)× Dsi
X′′(Y

′′–tors) −−→ Dsi
(X′×kX′′)

((Y′ ×k Y
′′)–tors).

We have not used the assumption of flatness of morphisms π′ and π′′ in this Sec-
tion 9.5 yet, but it is worth noticing that the morphism of ind-schemes π′ ×k π

′′ is
flat whenever the morphisms π′ and π′′ are. This follows from the similar property
of morphisms of schemes over k.

9.6. Derived tensor product of pro-sheaves as derived restriction to the
diagonal. Let X be an ind-scheme of ind-finite type over k, and let π : Y −→ X
be a flat affine morphism of ind-schemes. Then the following commutative square
diagram of morphisms of ind-schemes

Y
∆Y

//

π

��

Y×k Y

π×kπ
��

X
∆X

// X×k X

is a particular case of the diagram (42) from Section 9.1.
Let P• and Q• be two complexes of X-flat pro-quasi-coherent pro-sheaves on Y.

Our aim is to construct a natural isomorphism

(52) P• ⊗Y,L Q• ' L∆∗Y(P• �k Q
•)

in the derived category D(YX–flat). Here the derived functor of tensor product ⊗Y,L

(36) was constructed in Section 8.3, the functor of external tensor product �k was
discussed in Section 9.5, and the derived functor of inverse image L∆∗Y was defined

in Section 9.1. Recall that the isomorphism of underived functors P• ⊗Y Q• '
∆∗Y(P• �k Q

•) is provided by Lemma 6.12. The following proposition shows that
the derived functors agree.
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Proposition 9.13. For any two complexes P• and Q• ∈ D(YX–flat), a natural
isomorphism of left derived functors (52) holds in D(YX–flat).

Proof. Let F• and G• be two relatively homotopy flat complexes of flat pro-quasi-
coherent pro-sheaves on Y endowed with two morphisms of complexes F• −→P• and
G• −→Q• with the cones acyclic in YX–flat. Then the external tensor product F•�k
G• is a complex of flat pro-quasi-coherent pro-sheaves on Y ×k Y by formula (20)
from Section 6.2, and the cone of the morphism F•�k G

• −→P•�k Q
• is acyclic in

the exact category (Y×k Y)(X×kX)–flat by Lemma 9.11.
A problem similar to the one in the proof of Proposition 9.8 arises here. The best

possible argument for a proof of the desired isomorphism would be to show that the
complex F• �k G

• is a relatively homotopy flat complex of flat pro-quasi-coherent
pro-sheaves on Y ×k Y (relative to the morphism π ×k π : Y ×k Y −→ X ×k X).
Then the isomorphism of the derived functors would follow immediately from (their
constructions and) the isomorphism of the underived ones. However, we do not know
how to prove this relative homotopy flatness in full generality. Instead, we will show
that the relatively homotopy flat resolutions F• and G• of any two given complexes
P• and Q• can be chosen in such a way that the external tensor product F• �k G

•

is a relatively homotopy flat complex.
Once again we recall the construction of the relatively homotopy flat resolutions

from Proposition 8.8. All the complexes of flat pro-quasi-coherent pro-sheaves on Y
which can be obtained from the inverse images of complexes of flat pro-quasi-coherent
pro-sheaves on X using the operations of cone, infinite coproduct, and the passage
to a homotopy equivalent complex, are relatively homotopy flat; and any complex
P• ∈ C(YX–flat) admits a relatively homotopy flat resolution of this form.

Now assume that both the complexes F• and G• are homotopy equivalent to
complexes of flat pro-quasi-coherent pro-sheaves on Y obtained from the inverse
images of complexes of flat pro-quasi-coherent pro-sheaves on X using the operations
of cone and infinite coproduct. Then the complex F•�kG

• is homotopy equivalent to
a complex of flat pro-quasi-coherent pro-sheaves on Y×k Y similarly obtained from
the inverse images of complexes of flat pro-quasi-coherent pro-sheaves on X×kX. This
follows from the commutation of external tensor products with the inverse images
(Lemma 6.10), the commutation of external tensor products with the coproducts
(see Section 6.2 and Lemma 9.10(b)), and the preservation of flatness by the external
tensor products of pro-quasi-coherent pro-sheaves on X (formula (20)). �

9.7. Semiderived equivalence and change of fiber. Let us return to the set-
ting of the commutative triangle diagram of morphisms of ind-schemes (44) from
Section 9.2

W
g

//

ρ
  

Y

π
��

X
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where the morphisms π and ρ are flat and affine, and the ind-scheme X is ind-
Noetherian. Assume further that X is ind-semi-separated and endowed with a dual-
izing complex D•. Then Theorem 7.15 provides triangulated equivalences

π∗D• ⊗Y − : D(YX–flat) ' Dsi
X(Y–tors) :RHomY-qc(π

∗D•,−)

and
ρ∗D• ⊗W − : D(WX–flat) ' Dsi

X(W–tors) :RHomW-qc(ρ
∗D•,−).

Here the notation RHom stands for the fact that the functors Hom should be applied
to complexes of X-injective quasi-coherent torsion sheaves (while the functors ⊗Y and
⊗W are applied to arbitrary complexes of X-flat pro-quasi-coherent pro-sheaves).

Proposition 9.14. In the context above, the triangulated equivalences D(YX–flat) '
Dsi

X(Y–tors) and D(WX–flat) ' Dsi
X(W–tors) from Theorem 7.15 transform the left

derived functor Lg∗ : D(YX–flat) −→ D(WX–flat) (43) from Section 9.1 into the left
derived functor Lg∗ : Dsi

X(Y–tors) −→ Dsi
X(W–tors) (45) from Section 9.2.

Proof. Let P• be a complex of X-flat pro-quasi-coherent pro-sheaves on Y. We have
to construct a natural isomorphism

ρ∗D• ⊗W Lg∗(P•) ' Lg∗(π∗D• ⊗Y P•)

in the semiderived category Dsi
X(W–tors). Notice first of all that the related isomor-

phism for underived functors

ρ∗D• ⊗W g∗(P•) ' g∗π∗D• ⊗W g∗(P•) ' g∗(π∗D• ⊗Y P•)

holds because ρ∗D• ' g∗π∗D• (since ρ = πg) and by Lemma 3.4. (It was explained in
the proof of Proposition 9.5 that the morphism g is “representable by schemes”—in
fact, affine.)

To prove the desired isomorphism for derived functors, replace the complex P•

with a relatively homotopy flat complex of flat pro-quasi-coherent pro-sheaves F•

on Y endowed with a morphism of complexes F• −→ P• with the cone acyclic in
YX–flat. Then it remains to recall that the complex π∗D• ⊗Y F• of quasi-coherent
torsion sheaves on Y is homotopy Y/X-flat by Lemma 8.13(b). So we have

ρ∗D• ⊗W Lg∗(P•) = ρ∗D• ⊗W g∗(F•) ' g∗(π∗D• ⊗Y F•) = Lg∗(π∗D• ⊗Y P•)

in Dsi
X(W–tors). Here the rightmost equality holds because the morphism of com-

plexes of quasi-coherent torsion sheaves π∗D• ⊗Y F• −→ π∗D• ⊗Y P• on Y has a
cone whose direct image under π is coacyclic in X–tors. Indeed, the functor π∗D•⊗Y−
takes complexes acyclic in YX–flat to complexes with the direct image coacyclic in
X–tors, according to the proof of Theorem 7.15. The notation ρ∗D• ⊗W Lg∗(P•)
with a derived category object Lg∗(P•) is well-defined for the same reason. �
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9.8. Semiderived equivalence and base change. Now we return to the setting
of a pullback diagram of morphisms of ind-schemes similar to (46) from Section 9.3
(so W = Z×X Y).

W
k
//

ρ

��

Y

π

��

Z
i
// X

We start with an ind-scheme version of Lemma 4.24.

Lemma 9.15. In the diagram above, assume that i is a reasonable closed immer-
sion of reasonable ind-schemes and π is a flat morphism. Then there is a natural
isomorphism ρ∗i! ' k!π∗ of functors X–tors −→W–tors.

Proof. The (essentially obvious) argument is based on Remark 7.4 (which, in turn, is
based on Lemma 4.24). We use the notation similar to the proof of Lemma 9.6. Let
Z ⊂ Z be a reasonable closed subscheme; then Z can be also viewed as a reasonable
closed subscheme in X, embedded via i. Put W = Z ×Z W; then W is a reasonable
closed subscheme in W, and the scheme W can be also viewed as a reasonable
closed subscheme in Y, embedded via k. Denote by ρZ : W −→ Z the natural
morphism. For any quasi-coherent torsion sheaf M on X, the desired isomorphism of
quasi-coherent torsion sheaves ρ∗i!M ' k!π∗M on W is provided by the compatible
system of isomorphisms

(ρ∗i!M )(W) ' ρ∗Z((i!M )(Z)) ' ρ∗Z(M(Z)) ' (π∗M )(W) ' (k!π∗M )(W),

of quasi-coherent sheaves on W . Here the first and third isomorphisms hold by
Remark 7.4, while the second and third ones are the definition of i! and k!. �

The next lemma is a generalization of Lemma 7.17.

Lemma 9.16. In the diagram above, assume that i is a reasonable closed immersion
of reasonable ind-schemes and π is a flat affine morphism. Let M be a quasi-coherent
torsion sheaf on X and G be an X-flat pro-quasi-coherent pro-sheaf on Y; put NNN =
π∗M ∈Y–tors. Then there is a natural isomorphism

k!(G⊗Y NNN ) ' k∗G⊗W k!NNN

of quasi-coherent torsion sheaves on W.

Proof. In the notation Z ⊂ Z, W = Z ×Z W ⊂ W, and ρZ : W −→ Z from the
proofs of Lemmas 9.6 and 9.15, we compute

(k!(G⊗YNNN ))(W) ' (G⊗YNNN )(W) 'G(W)⊗OW
NNN (W) ' (k∗G)(W)⊗OW

(k!NNN )(W)

using Lemma 7.17 for the middle isomorphism. Hence the collection of quasi-coherent
sheaves (k∗G)(W) ⊗OW

(k!NNN )(W) on the reasonable closed subschemes W ⊂ W
defines a quasi-coherent torsion sheaf on W, and it follows easily that this quasi-
coherent torsion sheaf is naturally isomorphic to the tensor product k∗G⊗Wk!NNN . �
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Now we assume, in the diagram above, that π is a flat affine morphism, i is a
closed immersion, and the ind-scheme X is ind-semi-separated, ind-Noetherian, and
endowed with a dualizing complex D•. Then i!D• is a dualizing complex on Z (cf.
Example 4.8(2)). So Theorem 7.15 provides triangulated equivalences

π∗D• ⊗Y − : D(YX–flat) ' Dsi
X(Y–tors) :RHomY-qc(π

∗D•,−)

and
ρ∗i!D• ⊗W − : D(WZ–flat) ' Dsi

Z(W–tors) :RHomW-qc(ρ
∗i!D•,−).

Proposition 9.17. In the context above, the triangulated equivalences D(YX–flat) '
Dsi

X(Y–tors) and D(WZ–flat) ' Dsi
Z(W–tors) from Theorem 7.15 transform the left

derived functor Lk∗ : D(YX–flat) −→ D(WX–flat) (43) from Section 9.1 into the
right derived functor Rk! : Dsi

X(Y–tors) −→ Dsi
X(W–tors) (47) from Section 9.3.

Proof. Let P• be a complex of X-flat pro-quasi-coherent pro-sheaves on Y. We have
to construct a natural isomorphism

ρ∗i!D• ⊗W Lk∗(P•) ' Rk!(π∗D• ⊗Y P•)

in the semiderived category Dsi
Z(W–tors). The related isomorphism for underived

functors

ρ∗i!D• ⊗W k∗(P•) ' k!π∗D• ⊗W k∗(P•) ' k!(π∗D• ⊗Y P•)

holds by Lemmas 9.15 and 9.16.
To prove the desired isomorphism for derived functors, replace the complex P•

with a relatively homotopy flat complex of flat pro-quasi-coherent pro-sheaves F•

endowed with a morphism of complexes F• −→ P• which is an isomorphism in
D(YX–flat). Then it remains to recall that, according to the proof of Theorem 7.15,
the complex π∗D• ⊗Y F• (as well as the complex π∗D• ⊗Y P•) is a complex of
X-injective quasi-coherent torsion sheaves on Y. �

9.9. Semiderived equivalence and external tensor product. This Section 9.9
is a relative version of Section 6.6. Let X be an ind-Noetherian ind-scheme and
π : Y −→ X be an affine morphism of schemes. Let M • ∈ C(X–tors) be a complex
of quasi-coherent torsion sheaves on X. For any complex of X-flat pro-quasi-coherent
pro-sheaves G• on Y, put

ΦM •(G
•) = π∗(M •)⊗Y G• ∈ C(Y–tors).

According to formula (35) from Section 8.1, the functor ΦM • induces a well-defined
triangulated triangulated functor

ΦM • : D(YX–flat) −−→ Dsi
X(Y–tors).

Furthermore, any morphism M • −→ N • in the coderived category Dco(X–tors)
induces a morphism of triangulated functors ΦM • −→ ΦN • , which is an isomorphism
of functors whenever the morphism M • −→ N • is an isomorphism in Dco(X–tors).
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Proposition 9.18. Let X′ and X′′ be ind-semi-separated ind-schemes of ind-finite
type over k, and let π′ : Y′ −→ X′ and π′′ : Y′′ −→ X′′ be flat affine morphisms of
ind-schemes. Consider the induced morphism of the Cartesian products π = π′×kπ

′′ :
Y′ ×k Y

′′ −→ X′ ×k X
′′. Let D ′• and D ′′• be dualizing complexes on X′ and X′′, re-

spectively, and let E • be the related dualizing complex on X′×kX
′′, as in Lemma 6.26.

Then the triangulated equivalences

π′∗D ′• ⊗Y′ − : D(Y′X′–flat) ' Dsi
X′(Y

′–tors),

π′′∗D ′′• ⊗Y′′ − : D(Y′′X′′–flat) ' Dsi
X′′(Y

′′–tors),

and

π∗E • ⊗(Y′×kY
′′) − : D((Y′ ×k Y

′′)(X′×kX′′)–flat) ' D(X′×kX′′)((Y
′ ×k Y

′′)–tors)

from Theorem 7.15 form a commutative square diagram with the external tensor
product functors �k (50) and (51) from Section 9.5.

Proof. Let M ′• and M ′′• be complexes of quasi-coherent torsion sheaves on X′

and X′′. Then it follows from Lemmas 6.16 and 6.31 that, for any complex of X′-flat
pro-quasi-coherent pro-sheaves Q′• on Y′ and any complex of X′′-flat pro-quasi-
coherent pro-sheaves Q′′• on Y′′, there is a natural isomorphism

ΦM ′•�kM ′′•(Q′• �k Q
′′•) ' ΦM ′•(Q′•) �k ΦM ′′•(Q′′•)

in the category of complexes of quasi-coherent torsion sheaves on Y′ ×k Y′′. It
remains to take M ′• = D ′• and M ′′• = D ′′•, and observe that the isomorphism
D ′•�k D ′′• −→ E • in the coderived category Dco((X′×kX

′′)–tors) induces an isomor-
phism of triangulated functors ΦD ′•�kD ′′• −→ ΦE • , as per the discussion above. �

9.10. The semitensor product computed. Let us recall the setting and notation
from the introductory paragraphs of Section 9. Let X be an ind-separated ind-scheme
of ind-finite type over a field k, and let π : Y −→ X be a flat affine morphism of
schemes. Then the diagonal morphism ∆Y : Y −→Y×k Y decomposes as

Y
δY/X−−−→Y×X Y

ηY/X−−−→Y×k Y.

Both δ = δY/X and η = ηY/X are closed immersions of ind-schemes (see [20, Tags 01S7,
01KU(1), 01KR] for scheme versions of these assertions).

In fact, there is a commutative square diagram (a particular case of (42))

(53)

Y
∆Y

//

π
&&

Y×k Y

π×kπ
��

X
∆X

// X×k X
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which is composed of a commutative triangle diagram (a particular case of (44))

(54)

Y
δY/X

//

π
((

Y×X Y

π×Xπ
��

X

and a pullback diagram (a particular case of (46))

(55)

Y×X Y
ηY/X

//

π×Xπ

��

Y×k Y

π×kπ
��

X
∆X

// X×k X

The morphism ∆X is a closed immersion of ind-schemes. The morphisms of ind-
schemes π ×k π and π ×X π are flat and affine.

Theorem 9.19. In the context above, let D• be a rigid dualizing complex on the
ind-scheme X (in the sense of Section 6.5). Then, for any two complexes of quasi-
coherent torsion sheaves MMM • and NNN • ∈ Dsi

X(Y–tors), there is a natural isomorphism

(56) MMM • ♦π∗D• NNN • ' Lδ∗Rη!(MMM • �k NNN •)

in the Y/X-semiderived category Dsi
X(Y–tors) of quasi-coherent torsion sheaves

on Y. Here the semitensor product functor ♦π∗D• was defined in formula (38) in
Section 8.4. The external tensor product functor �k was defined in formula (51) in
Section 9.5, the right derived functor Rη! was defined in Section 9.3, and the left
derived functor Lδ∗ was defined in Section 9.2.

Proof. Let KKK • and JJJ • be two complexes of X-injective quasi-coherent tor-
sion sheaves on Y endowed with morphisms of complexes MMM • −→ KKK • and
NNN • −→ JJJ • with the cones whose direct images under π are coacyclic in X–tors.
Then F• = HomY-qc(π

∗D•,KKK •) and G• = HomY-qc(π
∗D•,JJJ •) are two complexes

in YX–flat corresponding to MMM • and NNN •, respectively, under the equivalence of
categories D(YX–flat) ' Dsi

X(Y–tors) from Theorem 7.15; so natural isomorphisms
π∗D•⊗YF• −→KKK • ←−MMM • and π∗D•⊗YG• −→JJJ • ←−NNN • exist in Dsi

X(Y–tors).
By the definition, we have

MMM • ♦π∗D• NNN • = π∗D• ⊗Y (F• ⊗Y,L G•).

Let E • be a (dualizing) complex of injective quasi-coherent torsion sheaves on
X ×k X endowed with a morphism of complexes D• �k D• −→ E • with the cone
coacyclic in (X×k X)–tors. Since D• is assumed to be a rigid dualizing complex, we
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have a homotopy equivalence D• ' ∆!
XE • of complexes in X–torsinj. Now we compute

π∗D• ⊗Y (F• ⊗Y,L G•)
9.13' π∗D• ⊗Y L∆∗Y(F• �k G

•)

9.8' π∗D• ⊗Y Lδ∗ Lη∗(F• �k G
•)

9.14' Lδ∗
(
(π ×X π)∗(D•)⊗(Y×XY) Lη∗(F• �k G

•)
)

9.17' Lδ∗Rη!
(
(π ×k π)∗(E •)⊗(Y×kY) (F• �k G

•)
)

9.18' Lδ∗Rη!
(
(π∗D• ⊗Y F•) �k (π∗D• ⊗Y G•)

) 9.12' Lδ∗Rη!(MMM • �k NNN •),

where the numbers over the isomorphism signs indicate the relevant propositions and
lemma where the natural isomorphisms are established. �

10. Invariance under Postcomposition with a Smooth Morphism

Let X be an ind-semi-separated ind-Noetherian ind-scheme, and let τ : X′ −→ X be
a smooth affine morphism of finite type. Let π′ : Y −→ X′ be a flat affine morphism,
and let π : Y −→ X denote the composition π = τπ′. Let D• be a dualizing complex
on X; then D ′• = τ ∗D• is a dualizing complex on X′.

The aim of this section is to show that the constructions of Sections 7–8, including
the semiderived category of quasi-coherent torsion sheaves on Y and the semitensor
product operation on it, are preserved by the passage from the flat affine morphism
π′ : Y −→ X′ to the flat affine morphism π : Y −→ X.

10.1. Weakly smooth morphisms. We refer to [20, Tag 01V4] for a discussion of
smooth morphisms of schemes. For the purposes of this section, a slightly weaker
condition is suffient; we call it weak smoothness. Essentially, a morphism of schemes
is said to be weakly smooth if it is flat with regular fibers of bounded Krull dimension.

Let X be a scheme and x ∈ X be a point. Denote by κX(x) the residue field of the
point x on X. Abusing notation, we will denote simply by x the one-point scheme
SpecκX(x). Then we have a natural morphism of schemes x −→ X.

Let f : Y −→ X be a morphism of schemes and x ∈ X be a point. Then the scheme
Yx = x×X Y is called the fiber of f over x. Given an integer d ≥ 0, we will say that
the morphism f is weakly smooth of relative dimension ≤ d if f is flat and for every
point x ∈ X the fiber Yx is a regular Noetherian scheme of Krull dimension ≤ d.

By [20, Tags 01VB and 00TT], any smooth morphism of schemes is weakly smooth.
According to [20, Tag 01V8], any weakly smooth morphism of finite type between
Noetherian schemes over a field of characteristic 0 is smooth. This is not true in finite
characteristic because of nonseparability issues (an inseparable finite field extension
is the simplest example of a nonsmooth flat morphism with regular fibers).

Notice that weak smoothness is not preserved by base change, generally speaking
(e. g., base changes of inseparable finite field extensions can have nilpotent elements
in the fibers). However, some base changes do preserve it. Let us say that a morphism
of schemes Z −→ X does not extend the residue fields if for every point z ∈ Z and
its image x ∈ X the induced field extension κX(x) −→ κZ(z) is an isomorphism.
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In particular, locally closed immersions of schemes do not extend the residue fields.
Clearly, if a morphism Y −→ X is weakly smooth of relative dimension ≤ d and a
morphism Z −→ X does not extend the residue fields, then the morphism Z×XY −→
Z is also weakly smooth of relative dimension ≤ d.

Any closed immersion of schemes is injective as a map of the underlying sets of
points. So any strict ind-scheme X, represented by an inductive system of closed
immersions of schemes X = “lim−→”

γ∈Γ
Xγ, gives rise to an inductive system of injective

maps of the underlying sets. The inductive limit of this inductive system of sets
is called the underlying set of points of X. Given a point x ∈ X, the residue field
κ = κX(x) is well-defined, because the closed immersions Xγ −→ Xδ, γ < δ ∈ Γ,
do not extend the residue fields (so one can take any γ ∈ Γ such that x ∈ Xγ ⊂ X
and put κX(x) = κXγ (x)). Denoting the scheme SpecκX(x) simply by x, we have a
morphism of ind-schemes x −→ X.

Let f : Y −→ X be a morphism of ind-schemes with is “representable by schemes”.
Then, for every point x ∈ X, the fiber x×XY is a scheme. As above, we will say that
the morphism f is weakly smooth of relative dimension ≤ d if f is flat and for every
point x ∈ X the scheme x ×X Y is Noetherian and regular of Krull dimension ≤ d.
Clearly, the morphism of ind-schemes f is weakly smooth of relative dimension ≤ d
if and only if, for every γ ∈ Γ, the morphism of schemes fγ : Yγ = Xγ ×X Y −→ Xγ

is weakly smooth of relative dimension ≤ d.
Let X be an ind-Noetherian ind-scheme and f : Y −→ X be a morphism of ind-

schemes. One says that f is a morphism of finite type if for every Noetherian scheme
T and every morphism of ind-schemes T −→ X the fibered product T ×X Y is a
scheme and the morphism of schemes T ×X Y −→ T is of finite type. It suffices
to check these conditions for the closed subschemes T = Xγ appearing in a given
representation of X by an inductive system of closed immersions of schemes.

10.2. Flat and injective dimension under weakly smooth morphisms. Let
M be a quasi-coherent sheaf on a scheme X, and d ≥ 0 be an integer. One says that
the injective dimension ofM does not exceed d if there exists an exact sequence 0 −→
M −→ J 0 −→ J 1 · · · −→ J d −→ 0 of quasi-coherent sheaves on X with injective
quasi-coherent sheaves J i. On a (locally) Noetherian scheme X, injectivity of quasi-
coherent sheaves is a local property [19, Proposition II.7.17 and Theorem II.7.18],
hence so is the injective dimension: the injective dimension of M is equal to the
supremum of the injective dimensions of the OX(Uα)-modules M(Uα), where X =⋃
α Uα is any given affine open covering of the scheme X.
Let M be a quasi-coherent sheaf on a quasi-compact, semi-separated scheme X.

According to [30, Section 2.4] or [12, Lemma A.1], every quasi-coherent sheaf on X
is a quotient sheaf of a flat quasi-coherent sheaf. One says that the flat dimension
of M does not exceed d if there exists an exact sequence 0 −→ Fd −→ Fd−1 −→
· · · −→ F0 −→ M −→ 0 of quasi-coherent sheaves on X with flat quasi-coherent
sheaves Fi. Since flatness of quasi-coherent sheaves is a local property, so is the flat
dimension: in the same notation as above, the flat dimension of M is equal to the
supremum of the flat dimensions of the OX(Uα)-modules M(Uα).
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The following relative form of Hilbert’s syzygy theorem is essentially well-known.

Proposition 10.1. Let R be an associative ring and S = R[x1, . . . , xd] be the ring
of polynomials in d variables with the coefficients in R. Then, for any S-module N :

(a) the flat dimension of N as an S-module does not exceed d plus the flat dimension
of N as an R-module;

(b) the projective dimension of N as an S-module does not exceed d plus the pro-
jective dimension of N as an R-module;

(c) the injective dimension of N as an S-module does not exceed d plus the injective
dimension of N as an R-module.

Proof. Parts (b) and (c) follow directly from [13, spectral sequence (I) in Section 2
and Theorem 6 in Section 4]. Parts (a) and (b) are provable by straightforward
induction in d using [29, Proposition 7.5.2]. �

The aim of this Section 10.2 is to prove the following partial generalization of
Proposition 10.1(a,c).

Proposition 10.2. Let X be a Noetherian scheme and f : Y −→ X be an affine
morphism of schemes. Assume that the morphism f is weakly smooth of relative
dimension ≤ d. Then, for any quasi-coherent sheaf N on Y :

(a) assuming that the scheme X is semi-separated, the flat dimension of N does
not exceed d plus the flat dimension of the quasi-coherent sheaf f∗N on X;

(b) assuming that f is a morphism of finite type, the injective dimension of N
does not exceed d plus the injective dimension of the quasi-coherent sheaf f∗N on X.

For any commutative ring R, an element a ∈ R, and an R-module M , we denote
by aM = ker(M

a−→ M) the submodule of all elements annihilated by a in M . So

aM is a module over the ring R/aR.

Lemma 10.3. Let R be a commutative ring and a ∈ R be an element. Then
(a) for every flat R-module F , the R/aR-module F/aF is flat;
(b) for every injective R-module J , the R/aR-module aJ is injective.

Proof. For any ring homomorphism R −→ T , the functor F 7−→ T ⊗R F takes flat
R-modules to flat T -modules, and the functor J 7−→ HomR(T, J) takes injective
R-modules to injective T -modules. It remains to apply these observations to the ring
homomorphism R −→ R/aR = T in order to deduce the assertions of the lemma. �

Lemma 10.4. Let R −→ S be a homomorphism of commutative rings such that S
is a flat R-module. Let a ∈ R be an element. Then

(a) for any flat resolution F• of an R-flat S-module G, the complex F•/aF• is a
flat resolution of an (R/aR-flat) S/aS-module G/aG;

(b) for any injective resolution J• of an R-injective S-module K, the complex aJ
•

is an injective resolution of an (R/aR-injective) S/aS-module aK.

Proof. Let us prove part (b). Since S is a flat R-module, the underlying R-module
of any injective S-module is injective. So, viewed as a complex of R-modules,
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J• is an injective resolution of an injective R-module K. Hence the complex

aJ
• = HomR(R/aR, J•) is exact, i. e., it is a resolution of the R-module aK. The

R/aR-module aK is injective by Lemma 10.3(b), and the terms of the complex aJ
•

are injective S/aS-modules by the same lemma. �

Lemma 10.5. Let S be a commutative ring and a ∈ S be a nonzero-dividing (regular)
element.

(a) Let M and N be two S-modules for which the maps M
a−→ M and N

a−→ N
are injective. Then there is a distinguished triangle

M ⊗L
§ N

a−−→ M ⊗L
S N −−→ M/aM ⊗L

S/aS N/aN −−→ M ⊗L
S N [1]

in the derived category of S-modules.
(b) Let M and K be two S-modules such that the map M

a−→ M is injective and

the map K
a−→ K is surjective. Then there is a distinguished triangle

RHomS(M,K)[−1] −−→ RHomS/aS(M/aM, aK)

−−→ RHomS(M,K)
a−−→ RHomS(M,K)

in the derived category of S-modules.

Proof. Let us prove part (b). Firstly, there is a distinguished triangle M
a−→M −→

M/aM −→M [1] in D(S–mod). Applying RHomS(−, K), we obtain

RHomS(M,K)[−1] −−→ RHomS(M/aM,K)

−−→ RHomS(M,K)
a−−→ RHomS(M,K).

It remains to construct an isomorphism

RHomS(M/aM,K) ' RHomS/aS(M/aM, aK)

in D(S–mod). For this purpose, choose an injective resolution J• of the S-module K.

Notice that, for any injective S-module J , the map J
a−→ J is surjective, because

it can be obtained by applying the functor HomS(−, J) to an injective S-module

morphism S
a−→ S. So J• is a resolution of an a-divisible S-module K by a-divisible

S-modules. It follows that the complex aJ
• is exact, i. e., it is a resolution

of the S-module aK. By Lemma 10.3(b), aJ
• is an injective resolution of the

S/aS-module aK. Finally, we use the isomorphism of complexes of S-modules (in
fact, S/aS-modules) HomS(M/aM, J•) ' HomS/aS(M/aM, aJ

•). �

Proof of Proposition 10.2(a). A result bearing some similarity with, but still quite
different from our assertion can be found in [3, Lemma 2.7].

The question is local in X, so it reduces to affine schemes, for which it means
the following. Let R −→ S be a homomorphism of commutative rings such that
the ring R is Noetherian, the R-module S is flat, and for every prime ideal p ⊂ R,
the fiber ring κR(p) ⊗R S is Noetherian and regular of Krull dimension ≤ d. Here
κR(p) = Rp/Rpp denotes the residue field of the prime ideal p in R. Then, for any
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S-module N , the flat dimension of the S-module N does not exceed d plus the flat
dimension of the R-module N .

Since S is a flat R-module, all flat S-modules are also flat as R-modules. Let F•
be a flat resolution of the S-module N ; for every n ≥ 0, denote by ΩnN the cokernel
of the S-module morphism Fn+1 −→ Fn (so, in particular, Ω0N = N). Suppose that
the flat dimension e of the R-module N is finite. Then G = ΩeN is a flat R-module.
It remains to show that the flat dimension of the S-module G does not exceed d;
then it will follow that ΩdG = Ωd+eN is a flat S-module, so the flat dimension of the
S-module N does not exceed d+ e. Thus, in order to prove the desired assertion, it
suffices to consider the case of an R-flat S-module G.

The argument proceeds by Noetherian induction in the ring R. So we assume that
the desired assertion holds of all the quotient rings of R by nonzero ideals. Let G be
an R-flat S-module. We consider two cases separately.

Case I. Suppose that R has zero-divisors. Let a and b ∈ R be a pair of nonzero
elements for which ab = 0.

By Lemma 10.3(a), G/aG is an R/aR-flat S/aS-module and G/bG is an R/bR-flat
S/bS-module. Furthermore, the ring S/aS is a flat R/aR-module, and it is clear
that the fiber rings of the ring homomorphism R/aR −→ S/aS are regular of Krull
dimension ≤ d (and similarly for R/bR −→ S/bS). By the assumption of Noetherian
induction, the flat dimensions of the S/aS-module G/aG and the S/bS-module G/bG
do not exceed d.

We have to show that TorSd+1(M,G) = 0 for all S-modules M . Consider the short
exact sequence of S-modules 0 −→ aM −→ M −→ M/aM −→ 0. The R-module
aM is annihilated by b and the R-module M/aM is annihilated by a. So the problem
reduces to R-modules M for which either aM = 0 or bM = 0.

Suppose that aM = 0. Let F• be a flat resolution of the S-module G; then,
by Lemma 10.4(a), F•/aF• is a flat resolution of the S/aS-module G/aG. Hence

TorSi (M,G) ' Tor
S/aS
i (M,G/aG) = 0 for i > d, as desired.

Case II. Suppose that R is an integral domain, and denote by Q the field of fractions
ofR. For any S-moduleM , we haveQ⊗RTorSi (M,G) ' TorQ⊗RSi (Q⊗RM,Q⊗RG) for
all i ≥ 0. By assumption, Q⊗RS is a regular Noetherian ring of Krull dimension ≤ d,
so the global dimension of Q ⊗R S does not exceed d. Hence Q ⊗R TorSi (M,G) = 0
for all i > d, and it follows that TorSi (M,G) is a torsion R-module.

Let a ∈ R be a nonzero element. In order to show that TorSi (M,G) = 0 for i > d, it
suffices to prove that there are no nonzero elements annihilated by a in TorSi (M,G).

Let 0 −→ ΩM −→ F −→ M −→ 0 be a short exact sequence of S-modules with
a flat S-module F . If d ≥ 1, then we have TorSd+1(M,G) ' TorSd (ΩM,G). When

d = 0, the S-module TorS1 (M,G) is the kernel of the morphism ΩM⊗SG −→ F⊗SG.
Since F is a flat S-module and G is a flat R-module, the R-module F ⊗S G is flat; in
particular, it contains no nonzero elements annihilated by a. So the submodules of
elements annihilated by a in the S-modules TorS1 (M,G) and ΩM ⊗S G are naturally
isomorphic. In both cases, it remains to show that there are no nonzero elements
annihilated by a in TorSd (ΩM,G).
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Both theR-modules ΩM andG contain no nonzero elements annihilated by a (since
ΩM is a submodule in a flat R-module F ). The same applies to the R-module S.
By Lemma 10.5(a), we have a distinguished triangle in D(S–mod)

ΩM ⊗L
S G

a−−→ ΩM ⊗L
S G −−→ (ΩM/aΩM)⊗L

S/aS G/aG −−→ ΩM ⊗L
S G[1].

It follows from the related long exact sequence of cohomology modules that

Tor
S/aS
d+1 (ΩM/aΩM,G/aG) 6= 0 whenever there are any nonzero elements annihilated

by a in TorSd (ΩM,G).
Finally, similarly to Case I, G/aG is an R/aR-flat S/aS-module, the ring S/aS

is a flat R/aR-module, and the fiber rings of the ring homomorphism R/aR −→
S/aS are regular of Krull dimension ≤ d. By the assumption of Noetherian in-
duction, the flat dimension of the S/aS-module G/aG does not exceed d, hence

Tor
S/aS
d+1 (ΩM/aΩM,G/aG) = 0 and we are done. �

For any element a in a ring R, we denote by R[a−1] the localization of the ring
R at the multiplicative subset {1, a, a2, a3, . . . } ⊂ R. For any R-module E, we put
E[a−1] = R[a−1]⊗R E.

Lemma 10.6 (Grothendieck’s generic freeness). Let R be a Noetherian commutative
integral domain, S be a finitely generated commutative R-algebra, and M be a finitely
generated S-module. Then there exists a nonzero element a ∈ R such that M [a−1] is
a free R[a−1]-module.

Proof. This is [17, Lemme 6.9.2] or [28, Theorem 24.1]. �

Lemma 10.7. Let S be a commutative ring and a ∈ S be an element. Let M and K
be S-modules such that Ext1

S(S[a−1], K) = 0. Then for every i ≥ 0 there is a natural
surjective S-module map

ExtiS[a−1](M [a−1],HomS(S[a−1], K)) −−→ HomS(S[a−1],ExtiS(M,K)).

Proof. The key observation is that the projective dimension of the S-module S[a−1]
cannot exceed 1 (see [49, proof of Lemma 2.1] or [50, Lemma 1.9]). Therefore, our
assumption implies that RHomS(S[a−1], K) = HomS(S[a−1], K). Furthermore, one
clearly has

RHomS[a−1](M [a−1],RHomS(S[a−1], K)) ' RHomS(S[a−1],RHomS(M,K)).

Finally, since RHomS(S[a−1],−) is a derived functor of homological dimension ≤ 1,
for any complex of S-modules C• and integer i ∈ Z there is a natural short exact
sequence of S-modules

0 −−→ Ext1
S(S[a−1], H i−1(C•))

−−→ H iRHomS(S[a−1], C•) −−→ HomS(S[a−1], H i(C•)) −−→ 0.
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Taking C• = RHomS(M,K) and combining these observations, we obtain, in the
situation at hand, a natural short exact sequence of S-modules

0 −−→ Ext1
S(S[a−1],Exti−1

S (M,K)) −−→ ExtiS[a−1](M [a−1],HomS(S[a−1], K))

−−→ HomS(S[a−1],ExtiS(M,K)) −−→ 0.

�

Lemma 10.8. Let S be a commutative ring, a ∈ S be an element, and E be
an S-module. Suppose that the map a : E −→ E is surjective. Then the map
HomS(S[a−1], E) −→ E induced by the localization map S −→ S[a−1] is surjective.
In particular, if HomS(S[a−1], E) = 0, then E = 0.

Proof. Given an element e ∈ E, put e0 = e, and for every n ≥ 1 choose an element
en ∈ E such that aen = en−1. Then the sequence of elements e0, e1, e2, . . . ∈ E
defines the desired S-module morphism S[a−1] −→ E. �

Proof of Proposition 10.2(b). The question is local in X, so it reduces to affine
schemes, for which it means the following. Let R −→ S be a homomorphism of
Noetherian commutative rings such that S is a finitely generated R-algebra, the
R-module S is flat, and and for every prime ideal p ⊂ R, the fiber ring κR(p)⊗R S is
regular of Krull dimension ≤ d. Then for any S-module N , the injective dimension of
the S-module N does not exceed d plus the injective dimension of the R-module N .

Since S is a flat R-module, all injective S-modules are also injective as R-modules.
Arguing similarly to the proof of part (a) above, one reduces the question to the case
of an R-injective S-module K, for which one has to prove that its injective dimension
as an S-module does not exceed d.

As in part (a), the argument proceeds by Noetherian induction in R (so we assume
that the desired assertion holds for all the quotient rings of R by nonzero ideals).

Case I. Suppose that R has zero-divisors. Let a and b ∈ R be a pair of nonzero el-
ements for which ab = 0. By Lemma 10.3(b), aK is an R/aR-injective S/aS-module
and bK is an R/bR-injective S/bS-module. By the assumption of Noetherian induc-
tion, the flat dimensions of the S/aS-module aK and the S/bS-module bK do not
exceed d.

We have to show that Extd+1
S (M,K) = 0 for all S-modules M . Using the short

exact sequence of S-modules 0 −→ aM −→ M −→ M/aM −→ 0, the question is
reduced to R-modules M for which either aM = 0 or bM = 0.

Suppose that aM = 0. Let J• be an injective resolution of the S-module K; then,
by Lemma 10.4(b), aJ

• is an injective resolution of the S/aS-module aK. Hence
ExtiS(M,K) ' ExtiS/aS(M, aK) = 0 for i > d, as desired.

Case II. Suppose that R is an integral domain. It suffices to show that
Extd+1

S (M,K) = 0 for all finitely generated S-modules M . By Lemma 10.6,
there exists a nonzero element a ∈ R such that the R[a−1]-module M [a−1] is
free. According to the assertion of part (a), it follows that the flat dimension of
the S[a−1]-module M [a−1] does not exceed d. Since S[a−1] is a Noetherian ring
and M [a−1] is a finitely generated S[a−1]-module, the projective dimension of the

141



S[a−1]-module M [a−1] is equal to its flat dimension (as all finitely presented flat
modules are projective). Thus the projective dimension also does not exceed d.

We have shown that ExtiS[a−1](M [a−1], L) = 0 for all S[a−1]-modules L and all i > d.

Let us apply this observation to the S[a−1]-module L = HomS(S[a−1], K). Notice
that Ext1

S(S[a−1], K) ' Ext1
R(R[a−1], K) = 0, since K is an injective R-module.

Using Lemma 10.7, we can conclude from ExtiS[a−1](M [a−1],HomS(S[a−1], K)) = 0

that HomS(S[a−1],ExtiS(M,K)) = 0 for i > d.
In view of Lemma 10.8, it now suffices to show that the map a : Extd+1

S (M,K) −→
Extd+1

S (M,K) is surjective, i. e., the S-module Extd+1
S (M,K) is a-divisible. From

this point on, the argument again proceeds similarly (or rather, dually) to the proof
of part (a).

Let 0 −→ ΩM −→ P −→M −→ 0 be a short exact sequence of S-modules with a
projective S-module P . If d ≥ 1, then the we have Extd+1

S (M,K) ' ExtdS(ΩM,K).
When d = 0, the S-module Ext1

S(M,K) is the cokernel of the morphism
HomS(P,K) −→ HomS(ΩM,K). Since P is a projective S-module and K is
an injective R-module, the R-module HomS(P,K) is injective; in particular, it is
a-divisible (as a is a nonzero-divisor in R). So the quotient modules of Ext1

S(M,K)
and HomS(ΩM,K) by the action of a are naturally isomorphic; in particular, the
S-module Ext1

S(M,K) is a-divisible if and only if the S-module HomS(ΩM,K)
is. Thus, in both cases d ≥ 1 or d = 0, it remains to show that the S-module
ExtdS(ΩM,K) is a-divisible.

Both the R-modules S and ΩM contain no nonzero elements annihilated by a
(since S is a flat R-module and ΩM is a submodule of a projective S-module), while
the R-module K is a-divisible (since it is injective). By Lemma 10.5(b), we have a
distinguished triangle in D(S–mod)

RHomS(ΩM,K)[−1] −−→ RHomS/aS(ΩM/aΩM, aK)

−−→ RHomS(ΩM,K)
a−−→ RHomS(ΩM,K).

It follows from the related long exact sequence of cohomology modules that
Extd+1

S/aS(ΩM/aΩM, aK) 6= 0 whenever the map a : ExtdS(ΩM,K) −→ ExtdS(ΩM,K)
is not surjective.

Finally, similarly to the proof of part (a), the assumption of Noetherian induction
is applicable to the ring homomorphism R/aR −→ S/aS and the S/aS-module aK,
which is R/aR-injective by Lemma 10.3(b). Hence Extd+1

S/aS(ΩM/aΩM, aK) = 0 and

we are done. �

10.3. Preservation of the derived category of pro-sheaves. Let E be an exact
category. Assume that the additive category E is weakly idempotent complete, i. e.,
it contains the kernels of its split epimorphisms, or equivalently, the cokernels of its
split monomorphisms. A full subcategory F ⊂ E is said to be resolving if the following
conditions are satisfied:

(i) F is closed under extensions in E, i. e., for any admissible short exact sequence
0 −→ E ′ −→ E −→ E ′′ −→ 0 in E with E ′, E ′′ ∈ F one has E ∈ F;
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(ii) F is closed under the kernels of admissible epimorphisms in E, i. e., for any
admissible short exact sequence 0 −→ E ′ −→ E −→ E ′′ −→ 0 in E with E,
E ′′ ∈ F one has E ′ ∈ F;

(iii) for any object E ∈ E there exists an object F ∈ F together with an admissible
epimorphism F −→ E in E.

Let F ⊂ E be a resolving subcategory and d ≥ 0 be an integer. One says that the
F-resolution dimension of an object E ∈ E does not exceed d if there exists an exact
sequence 0 −→ Fd −→ Fd−1 −→ · · · −→ F0 −→ E −→ 0 in E with Fi ∈ F. According
to [61, Proposition 2.3(1)] or [44, Corollary A.5.2], the F-resolution dimension of an
object E ∈ E does not depend on the choice of a resolution.

Since a resolving subcategory F ⊂ E is closed under extensions by (i), it inherits
an exact category structure from the ambient exact category F.

Proposition 10.9. Let E be a weakly idempotent-complete exact category and F ⊂ E
be a resolving subcategory such that, for a certain finite integer d ≥ 0, the F-resolution
dimensions of all the objects in E do not exceed d. Then the triangulated functor
between the derived categories D(F) −→ D(E) induced by the exact inclusion of exact
categories F −→ E is an equivalence of triangulated categories.

Proof. This is a part of [44, Proposition A.5.6]. �

Let τ : X′ −→ X and π′ : Y −→ X′ be flat affine morphisms of ind-semi-separated
ind-schemes. Put π = τπ′ : Y −→ X. Recall the notation YX–flat for the exact
category of X-flat pro-quasi-coherent pro-sheaves on Y (as defined in Section 7.2).

Lemma 10.10. (a) The exact category YX′–flat is a resolving full subcategory in the
exact category YX–flat. The exact category structure of YX′–flat is inherited from
the exact category structure of YX–flat.

(b) Assume additionally that the ind-scheme X is ind-Noetherian and the morphism
τ : X′ −→ X is weakly smooth of relative dimension ≤ d (in the sense of Section 10.1)
for some finite integer d. Then the resolution dimension of any object of the exact
category YX–flat with respect to the resolving subcategory YX′–flat does not exceed d
(in other words, the X′-flat dimension of any X-flat pro-quasi-coherent pro-sheaf on
Y does not exceed d).

Proof. Part (a): let G be an X′-flat pro-quasi-coherent pro-sheaf on Y; so π′∗G is a
flat pro-quasi-coherent pro-sheaf on X′. Since τ : X′ −→ X is a flat affine morphism,
the functor τ∗ : X

′–pro −→ X–pro takes flat pro-quasi-coherent pro-sheaves on X′ to
flat pro-quasi-coherent pro-sheaves on X. Hence π∗G = τ∗π

′
∗G is a flat pro-quasi-

coherent pro-sheaf on X; so the pro-quasi-coherent pro-sheaf G on Y is X-flat. This
proves the inclusion YX′–flat ⊂YX–flat.

Let X = “lim−→”
γ∈Γ

Xγ be a representation of X by an inductive system of closed

immersions of ind-schemes. Put X ′γ = Xγ ×X X′ and Yγ = Xγ ×X Y; then X′ =
“lim−→”

γ∈Γ
X ′γ and Y = “lim−→”

γ∈Γ
Yγ are similar representations of X′ and Y. We have

flat affine morphisms of schemes Yγ −→ X ′γ −→ Xγ.
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A pro-quasi-coherent pro-sheaf G on Y is X-flat (resp., X′-flat) if and only if

the quasi-coherent sheaf G(Yγ) on Yγ is Xγ-flat (resp., X ′γ-flat) for every γ ∈ Γ.
Furthermore, a short sequence 0 −→ F −→G −→ H −→ 0 is exact in YX–flat (resp.,

in YX′–flat) if and only if the short sequence 0 −→ F(Yγ) −→ G(Yγ) −→ H(Yγ) −→ 0
is exact in (Yγ)Xγ–flat (resp., in (Yγ)X′γ–flat) for every γ ∈ Γ.

The full subcategory (Yγ)X′γ–flat ⊂ (Yγ)Xγ–flat is closed under extensions and the
kernels of admissible epimorphisms, because the full subcategory X ′γ–flat ⊂ X ′γ–qcoh
is. It follows that the full subcategory YX′–flat ⊂YX–flat is closed under extensions
and the kernels of admissible epimorphisms, too. The exact category structure on
(Yγ)X′γ–flat is inherited from that on (Yγ)Xγ–flat (since both are inherited from the
abelian category Y–qcoh). It follows that the exact category structure of YX′–flat is
inherited from YX–flat.

We still have not used the assumption that the morphism π′ (hence also π) is flat;
now we need to use it in order to construct an admissible epimorphism onto any X-flat
pro-quasi-coherent pro-sheaf on Y from an X′-flat one. Indeed, let G be an X-flat
pro-quasi-coherent pro-sheaf on Y. Then the adjunction morphism π∗π∗G −→G is
an admissible epimorphism in YX–flat (cf. Lemma 8.7), and the pro-quasi-coherent
pro-sheaf π∗π∗G on Y is even flat, hence X′-flat.

Part (b): let G be an X-flat pro-quasi-coherent pro-sheaf on Y, and let 0 −→
Fd −→ Fd−1 −→ · · · −→ F0 −→ G −→ 0 be an exact sequence in YX–flat with
Fi ∈ YX′–flat for all 0 ≤ i < d. We need to show that Fd ∈ YX′–flat. In the

notation above, it suffices to check that F
(Yγ)
d ∈ (Yγ)X′γ–flat. We know that F

(Yγ)
i ∈

(Yγ)X′γ–flat for 0 ≤ i < d and G(Yγ) ∈ (Yγ)Xγ–flat.
Introduce the notation τγ : X ′γ −→ Xγ, π′γ : Yγ −→ X ′γ, and πγ : Yγ −→ Xγ for

the relevant affine morphisms of schemes. We need to show that π′γ∗F
(Yγ)
d ∈ X ′γ–flat.

Put Fi = π′γ∗F
(Yγ)
i and G = π′γ∗G

(Yγ) ∈ X ′γ–qcoh. Then we have an exact sequence
0 −→ Fd −→ Fd−1 −→ · · · −→ F0 −→ G −→ 0 of quasi-coherent sheaves on X ′γ. We

know that Fi ∈ X ′γ–flat for 0 ≤ i < d and τγ∗G = τγ∗π
′
γ∗G

(Yγ) = πγ∗G
(Yγ) ∈ Xγ–flat.

Applying Proposition 10.2(a) to the quasi-coherent sheaf G on X ′γ and the mor-
phism of schemes τγ : X ′γ −→ Xγ, which is affine and weakly smooth of relative di-
mension ≤ d by assumptions, while the scheme Xγ is Noetherian and semi-separated,
we conclude that Fd ∈ X ′γ–flat. �

Corollary 10.11. Let X be an ind-semi-separated ind-Noetherian ind-scheme,
τ : X′ −→ X be an affine morphism which is weakly smooth of relative dimen-
sion ≤ d, and π′ : Y −→ X′ be a flat affine morphism of ind-schemes. Put
π = τπ′. Then the exact inclusion of exact categories YX′–flat −→ YX–flat induces
a triangulated equivalence between the derived categories D(YX′–flat) ' D(YX–flat).

Proof. Follows from Lemma 10.10 and Proposition 10.9. �

10.4. Preservation of the semiderived category of torsion sheaves. Let X be
an ind-Noetherian ind-scheme, and let τ : X′ −→ X be an affine morphism of ind-
schemes. Assume that the morphism τ is of finite type and weakly smooth of relative
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dimension ≤ d (in the sense of Section 10.1) for some finite integer d. Consider the
direct image functor τ∗ : X

′–tors −→ X–tors.

Proposition 10.12. A complex of quasi-coherent torsion sheaves M • on X′ is coa-
cyclic if and only if the complex of quasi-coherent torsion sheaves τ∗M • on X is
coacyclic.

Proof. It is clear from Lemmas 7.1(a) and 7.2 that the functor τ∗ (for any affine mor-
phism of reasonable ind-schemes τ) takes coacyclic complexes to coacyclic complexes.

To prove the converse, assume that the complex τ∗M • is coacyclic in X–tors. The
ind-scheme X′ is ind-Noetherian, so Corollary 4.18 is applicable and there exists
a complex of injective quasi-coherent torsion sheaves J • on X′ together with a
morphism of complexes M • −→ J • with a coacyclic cone. Then the cone of the
morphism τ∗M • −→ τ∗J • is also coacyclic, as we have already seen. Hence the
complex τ∗J • is coacyclic in X–tors, and it remains to show that the complex J •

is coacyclic in X′–tors.
Furthermore, for a flat morphism of reasonable ind-schemes τ : X′ −→ X the func-

tor τ∗ : X
′–tors −→ X–tors takes injectives to injectives, since its left adjoint functor

τ ∗ : X–tors −→ X′–tors is exact (by Lemma 7.3). So τ∗J • is a coacyclic complex of
injectives in X–tors, and it follows that τ∗J • is a contractible complex.

Therefore, for any closed subscheme Z ⊂ X, the complex (τ∗J •)(Z) of quasi-
coherent sheaves on Z is a contractible complex of injectives, too. Put Z ′ = Z ×X X′

and denote by τZ : Z ′ −→ Z the natural morphism; then we have (τ∗J •)(Z) =
τZ∗J •

(Z′). Now J •
(Z′) is a complex of injective quasi-coherent sheaves on Z ′. Since

the complex τZ∗J •
(Z′) is acyclic and the functor τZ∗ : Z

′–qcoh −→ Z–qcoh is exact and

faithful (the morphism τZ being affine), it follows that J •
(Z′) is an acyclic complex.

Denote by K n ∈ Z ′–qcoh the quasi-coherent sheaves of cocycles of the acyclic
complex J •

(Z′). Then τZ∗K n ∈ Z–qcoh are the quasi-coherent sheaves of cocycles of
the contractible complex of injective quasi-coherent sheaves τZ∗J •

(Z′) on Z. Hence
the quasi-coherent sheaves τZ∗K n on Z are injective.

By assumptions, the morphism of schemes τZ : Z ′ −→ Z is affine, weakly smooth of
relative dimension ≤ d, and of finite type, while Z is a Noetherian scheme. Applying
Proposition 10.2(b) to the morphism τ and each of the quasi-coherent sheaves K n

on Z ′, we see that they have finite injective dimensions in Z ′–qcoh. As these are the
objects of cocycles of an acyclic complex of injectives J •

(Z′), we can conclude that
the quasi-coherent sheaves K n are injective and the complex J •

(Z′) is contractible.
Finally, Lemma 4.21 tells that the complex of injective quasi-coherent torsion

sheaves J • on X′ is contractible. �

Corollary 10.13. Let X be an ind-Noetherian ind-scheme, τ : X′ −→ X be an
affine morphism of finite type which is weakly smooth of relative dimension ≤ d,
and π′ : Y −→ X′ be a flat affine morphism of ind-schemes. Put π = τπ′. Then the
Y/X′-semiderived category of quasi-coherent torsion sheaves on Y coincides with the
Y/X-semiderived category, Dsi

X′(Y–tors) = Dsi
X(Y–tors).
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Proof. Let NNN • be a complex of quasi-coherent torsion sheaves on Y. Then we have
an isomorphism of complexes π∗NNN

• ' τ∗π
′
∗NNN

• in X–tors. By Proposition 10.12,
it follows that the complex π′∗NNN

• is coacyclic in X′–tors if and only if the complex
π∗NNN

• is coacyclic in X–tors. �

10.5. Derived restriction with supports commutes with flat pulback. Let
f : Y −→ X be a flat morphism of ind-Noetherian ind-schemes, and let i : Z −→ X be
a closed immersion of ind-schemes. Consider the pullback diagram (so W = Z×X Y)

W
k
//

g

��

Y

f
��

Z
i
// X

Since the morphisms i and k are closed immersions, the ind-schemes Z and W are
also ind-Noetherian.

The right derived functor Ri! : Dco(X–tors) −→ Dco(Z–tors) was defined in Sec-
tion 6.4, and similarly there is the right derived functor Rk! : Dco(Y–tors) −→
Dco(W–tors).

The morphisms of ind-schemes f and g are flat, so the inverse image functors
f ∗ : X–tors −→ Y–tors and g∗ : Z–tors −→ W–tors are exact by Lemma 7.3. The
functors f ∗ and g∗ are also left adjoints by Lemma 2.10(b), so they preserve coprod-
ucts. Hence the functors f ∗ and g∗ take coacyclic complexes to coacyclic complexes,
and consequently induce well-defined inverse image functors between the coderived
categories,

f ∗ : Dco(X–tors) −−→ Dco(Y–tors)

and similarly g∗ : Dco(Z–tors) −→ Dco(Y–tors).
The aim of this Section 10.5 is to prove the following proposition (which is to be

compared with Proposition 6.19).

Proposition 10.14. There is a natural isomorphism g∗◦Ri! ' Rk!◦f ∗ of triangulated
functors Dco(X–tors) −→ Dco(W–tors).

The underived version of the natural isomorphism from Proposition 10.14 is pro-
vided by Lemma 9.15. Given the underived version, the assertion of the proposition
follows almost immediately from the next lemma.

Lemma 10.15. Let J • be a complex of injective quasi-coherent torsion sheaves on
X, and let r : f ∗J • −→ K • be a morphism of complexes of quasi-coherent torsion
sheaves on Y such K • is a complex of injective quasi-coherent torsion sheaves and
the cone of r is a coacyclic complex of quasi-coherent torsion sheaves on Y. Then
the induced morphism of complexes of quasi-coherent torsion sheaves on W

k!(r) : k!f ∗J • −−→ k!K •

has coacyclic cone.

The proof of Lemma 10.15 will be given below near the end of Section 10.5.
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Lemma 10.16. Let R be a Noetherian commutative ring and R −→ S be a homo-
morphism of commutative rings such that S is a flat R-module. Let M be a finitely
generated R-module and N be an R-module. Then for every n ≥ 0 there is a natural
isomorphism of S-modules

ExtnS(S ⊗RM, S ⊗R N) ' S ⊗R ExtnR(M,N).

In particular, for any injective R-module J one has ExtnS(S ⊗RM, S ⊗R J) = 0 for
all n > 0.

Proof. The assumption of commutativity of S can be actually dropped (then one
obtains S-S-bimodule isomorphisms). We observe that for any finitely generated
R-module P there are natural isomorphisms of S-modules HomS(S⊗RP, S⊗RN) '
HomR(P, S ⊗RN) ' S ⊗R HomR(P,N). Now let P• −→M be a resolution of M by
finitely generated projective R-modules. The S ⊗R P• −→ S ⊗RM is a resolution of
S ⊗RM by finitely generated projective S-modules. The isomorphism of complexes
of S-modules HomS(S ⊗R P•, S ⊗R N) ' S ⊗R HomR(P•, N) induces the desired
isomorphism for the Ext modules. �

Lemma 10.17. Let f : Y −→ X be a flat morphism of Noetherian schemes, and let
i : Z −→ X be a closed immersion of schemes. Put W = Z ×X Y , and denote by
g : W −→ Z and k : W −→ Y the natural morphisms. Let J be an injective quasi-
coherent sheaf on X and f ∗J −→ K• be an injective resolution of the quasi-coherent
sheaf f ∗J on Y . Then one has

H0(k!K•) ' g∗i!J and Hn(k!K•) = 0 for n > 0.

Proof. To compute H0(k!K•), one can observe that the functor k! is left exact (as
a right adjoint), so H0(k!K•) ' k!f ∗J ' g∗i!J by Lemma 4.24. The cohomology
vanishing assertion is local in X and in Y (since injectivity of a quasi-coherent sheaf
on a Noetherian scheme is a local property), so it reduces to the case of affine schemes,
for which it means the following.

Let R −→ S be a homomorphism of Noetherian commutative rings such that S
is a flat R-module, and let R −→ T be a surjective homomorphism of commutative
rings. Let J be an injective R-module, and let K• be an injective resolution of the
S-module S ⊗R J . Then the complex HomS(S ⊗R T, K•) has vanishing cohomology
in the positive cohomological degrees. This is a particular case of Lemma 10.16. �

Lemma 10.18. Let f : Y −→ X be a flat morphism of ind-Noetherian ind-schemes,
and let Z ⊂ X be a closed subscheme with the closed immersion morphism i : Z −→ X.
Put W = Z×XY (so W is a closed subscheme in Y), and denote by fZ : W −→ Z and
k : W −→ Y the natural morphisms. Let J be an injective quasi-coherent torsion
sheaf on X and f ∗J −→ K • be an injective resolution of the quasi-coherent torsion
sheaf f ∗J on Y. Then one has

H0(k!K •) ' f ∗Zi
!J and Hn(k!K •) = 0 for n > 0.

Proof. The computation of H0 is similar to the one in Lemma 10.17 (use Remark 7.4).
To prove the higher cohomology vanishing, choose an inductive system of closed
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immersions of schemes (Xγ)γ∈Γ representing the ind-scheme X, so X = “lim−→”
γ∈Γ

Xγ.

We can always assume that there exists γ0 ∈ Γ such that Z = Xγ0 . Put Yγ = Xγ×XY;
then Y = “lim−→”

γ∈Γ
Yγ is a representation of Y by an inductive system of closed

immersions of schemes. Let fγ : Yγ −→ Xγ denote the natural morphism.
Our aim is to show that the exact sequence of quasi-coherent torsion sheaves

0 −→ f ∗J −→ K 0 −→ K 1 −→ K 2 −→ · · · remains exact after applying the
functor N 7−→ N |Γ : Y–tors −→ (Y,Γ)–syst. Notice that, by Remark 7.4, we have
(f ∗J )|Γ ' f ∗(J |Γ), or in other words, (f ∗J )(Yγ) = f ∗γJ(Xγ).

Denote by N1 ∈ (Y,Γ)–syst the cokernel of the morphism of Γ-systems (f ∗J )|Γ
−→ K 0|Γ. Let γ < δ ∈ Γ be a pair of indices. Denote the related transition maps in
the inductive systems by iγδ : Xγ −→ Xδ and kγδ : Yγ −→ Yδ.

The quasi-coherent sheaves K n
(Yδ)

on the scheme Yδ are injective for all n ≥ 0,
since the quasi-coherent torsion sheaves K n on the ind-scheme Y are injective. By
Lemma 10.17, the short exact sequence 0 −→ f ∗δJ(Xδ) −→ K 0

(Yδ)
−→ N1

(δ) −→ 0

remains exact after applying the functor k!
γδ. Hence the structure map N1

(γ) −→
k!
γδN1

(δ) in the Γ-system N1 is an isomorphism (of quasi-coherent sheaves on Yγ).
As this holds for all γ < δ ∈ Γ, we can conclude that the collection of quasi-

coherent sheaves N 1
(Yγ) = N1

(γ), γ ∈ Γ defines a quasi-coherent torsion sheaf N 1

on Y. So we have N1 = N 1|Γ and N 1 = N1+; in other words, this means that
the adjunction morphism N1 −→ N1+|Γ is an isomorphism of Γ-systems. Notice that
the quasi-coherent torsion sheaf N1+ on Y is, by the definition, the cokernel of the
monomorphism of quasi-coherent torsion sheaves f ∗J −→ K 0. We have shown that
the short exact sequence of quasi-coherent torsion sheaves 0 −→ f ∗J −→ K 0 −→
N1+ −→ 0 on Y remains exact after applying the functor N 7−→ N |Γ.

The argument finishes similarly to the proof of Lemma 6.23, proceeding step by
step up the cohomological degree and using Lemma 10.17 on every step. �

Lemma 10.19. Let f : Y −→ X be a flat morphism of ind-Noetherian ind-schemes,
and let i : Z ⊂ X be a closed immersion of schemes. Put W = Z ×X Y, and denote
by g : W −→ Z and k : W −→ Y the natural morphisms. Let J be an injective
quasi-coherent torsion sheaf on X and f ∗J −→ K • be an injective resolution of the
quasi-coherent torsion sheaf f ∗J on Y. Then one has

H0(k!K •) ' g∗i!J and Hn(k!K •) = 0 for n > 0.

Proof. The computation of H0 is similar to the one in Lemmas 10.17 and 10.18. The
functor k! is left exact as a right adjoint, and it remains to use Lemma 9.15. To prove
the vanishing assertion, choose a closed subscheme Z ⊂ Z with the closed immersion
morphism j : Z −→ Z. Put W = Z ×Z W = Z ×X Y, and denote by l : W −→ W
the natural closed immersion. Then by Lemma 10.18 we have Hn(l!k!K •) = 0 for
n > 0, and it follows that Hn(k!K •) = 0 for n > 0 as well. �

Proof of Lemma 10.15. The argument is similar to the proof of Lemma 6.20. Given
a complex J • of quasi-coherent torsion sheaves on X, the related complex K • of
quasi-coherent torsion sheaves on Y is defined uniquely up to a homotopy equivalence
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(by Proposition 4.15(a)); so it suffices to prove the assertion of the lemma for one
specific choice of the complex K •. We will use the complex K • provided by the
construction on which the proof of Proposition 4.15(b) is based.

Let f ∗J • −→ L 0,• be a monomorphism of complexes in Y–tors such that L 0,• is
a complex of injective quasi-coherent torsion sheaves. Denote by N 1,• the cokernel of
this morphism of complexes, and let N 1,• −→ L 1,• be a monomorphism of complexes
in which L 1,• is a complex of injectives. Proceeding in this way, we construct a
bounded below complex of complexes of injective quasi-coherent torsion sheaves L •,•

together with a quasi-isomorphism f ∗J • −→ L •,• of complexes of complexes in
Y–tors. In every cohomological degree n, the complex L •,n is an injective resolution
of the quasi-coherent torsion sheaf f ∗J n on Y. The complex K • is then constructed
by totalizing the bicomplex L •,• using infinite coproducts along the diagonals.

Recall that the functor k! : Y–tors −→ W–tors preserves coproducts. In every
cohomological degree n, applying k! to the complex 0 −→ f ∗J n −→ L 0,n −→
L 1,n −→ · · · produces an acyclic complex in W–tors by Lemma 10.19. It remains to
use the fact that the coproduct totalization of an acyclic bounded below complex of
complexes is a coacyclic complex [40, Lemma 2.1]. �

Proof of Proposition 10.14. Let M • be a complex of quasi-coherent torsion sheaves
on X. Choose a complex of injective quasi-coherent torsion sheaves J • on X together
with a morphism M • −→J • with a coacyclic cone. Then the cone of the morphism
f ∗M • −→ f ∗J • is a coacyclic complex of quasi-coherent torsion sheaves on Y.
Choose a complex of injective quasi-coherent torsion sheaves K • on Y together with
a morphism f ∗J • −→ K • with a coacyclic cone. By Lemma 10.15, the cone of
the morphism k!f ∗J • −→ k!K • is a coacyclic complex of quasi-coherent torsion
sheaves on W. Thus the complex k!f ∗J • represents the object Rk! ◦ f ∗(M •) in the
coderived category Dco(W–tors).

On the other hand, the complex i!J • represents the object Ri!(M •) ∈ Dco(Z–tors),
hence the complex g∗i!J • represents the object g∗ ◦ Ri!(M •) ∈ Dco(W–tors). It
remains to recall the isomorphism g∗i!J • ' k!f ∗J • of complexes of quasi-coherent
torsion sheaves on W provided by Lemma 9.15. �

10.6. Preservation of the semiderived equivalence. Let τ : X ′ −→ X be a
morphism of semi-separated Noetherian schemes. Assume that the morphism τ is of
finite type and weakly smooth of relative dimension ≤ d. Consider the inverse image
functor τ ∗ : X–qcoh −→ X ′–qcoh.

Lemma 10.20. Let D• be a dualizing complex of quasi-coherent sheaves on X.
Choose a complex of injective quasi-coherent sheaves D′• on X ′ together with a mor-
phism of complexes τ ∗D• −→ D′• with a coacyclic cone. Then D′• is a dualizing
complex of quasi-coherent sheaves on X ′.

Proof. It is helpful to keep in mind that a bounded below complex is coacyclic if
and only if it is acyclic, and any (unbounded) coacyclic complex of injectives is
contractible. Up to the homotopy equivalence, one can assume both D• and D′• to
be bounded below, and then it suffices that the cone be acyclic.
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The assertion is local in both X and X ′, so it reduces to the case of affine schemes,
for which it consists of three independent observations corresponding to the three
conditions (i–iii) in the definition of a dualizing complex in Section 4.2. In each case,
we consider a homomorphism of Noetherian commutative rings R −→ S such that S
is a flat R-module.

(1) Assume that S is a finitely generated R-algebra and for every prime ideal p ⊂ R,
the fiber ring κ(p)⊗RS is regular of Krull dimension ≤ d. If D• is a bounded complex
of injective R-modules, then the complex of S-modules S ⊗R D• is quasi-isomorphic
to a bounded complex of injective S-modules.

Indeed, it suffices to show that, for every injective R-module J , the S-module
S ⊗R J has finite injective dimension. Notice that the R-module S ⊗R J is injective
(since the R-module S is flat and R is a Noetherian ring); hence the assertion follows
from Proposition 10.2(b).

In fact, according to [14, Theorem 1] (see also [15, Corollary 1]), it suffices to
assume the fiber rings to be Gorenstein (of bounded Krull dimension) rather than
regular, and the assumption that S is a finitely generated R-algebra can be dropped.
The assumptions on the morphism τ before the formulation of the lemma can be
weakened accordingly.

(2) If D• is a complex of R-modules with finitely generated cohomology R-modules,
then S ⊗R D• is a complex of S-modules with finitely generated cohomology
S-modules. This is obvious for a flat R-algebra S.

(3) If D• is a bounded complex of R-modules with finitely generated cohomology
R-modules and the homothety map R −→ RHomR(D•, D•) is a quasi-isomorphism,
then the homothety map S −→ RHomS(S ⊗RD•, S ⊗RD•) is a quasi-isomorphism,
too.

More generally, if M • is a bounded above complex of R-modules with finitely gen-
erated cohomology modules and N • is a bounded below complex of R-modules, then
there is a natural isomorphism RHomS(S⊗RM •, S⊗RN •) ' S⊗RRHomR(M •, N •)
in the derived category of S-modules. This is a straightforward generalization of
Lemma 10.16; one just needs to replace M • with a quasi-isomorphic bounded above
complex of finitely generated projective R-modules. �

Let τ : X′ −→ X be an morphism of ind-semi-separated ind-Noetherian ind-
schemes. Assume that the morphism τ is of finite type and weakly smooth of relative
dimension ≤ d. Consider the inverse image functor τ ∗ : X–tors −→ X′–tors.

Lemma 10.21. Let D• be a dualizing complex of quasi-coherent torsion sheaves
on X. Choose a complex of injective quasi-coherent torsion sheaves D ′• on X′ together
with a morphism of complexes τ ∗D• −→ D ′• with a coacyclic cone. Then D ′• is a
dualizing complex of quasi-coherent torsion sheaves on X′.

Proof. Let Z ⊂ X be a closed subscheme; put Z ′ = Z ×X X′. Let i : Z −→ X
and k : Z ′ −→ X′ denote the closed immersion morphisms, and let τZ : Z ′ −→ Z
be the natural morphism (which is of finite type and weakly smooth of relative
dimension ≤ d). By Proposition 10.14, we have a natural isomorphism τ ∗Zi

!D• =
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τ ∗ZRi!D• ' Rk!τ ∗D• = k!D ′• in Dco(Z ′–qcoh). Since D• is a dualizing complex on
X′, the complex of quasi-coherent sheaves i!D• is a dualizing complex on Z. Now
Lemma 10.20 applied to the morphism of schemes τZ tells that k!D ′• is a dualizing
complex on Z ′, which by the definition means that D ′• is a dualizing complex on X′

(see condition (iv) in Section 4.2 and the discussion after it). �

Let X be an ind-semi-separated ind-Noetherian ind-scheme, τ : X′ −→ X be an
affine morphism of finite type which is weakly smooth of relative dimension ≤ d, and
π′ : Y −→ X′ be a flat affine morphism of ind-schemes. Put π = τπ′.

Let D• be a dualizing complex on X and D ′• be the related dualizing complex
on X′, as per the rule of Lemma 10.21. Then Theorem 7.15 provides triangulated
equivalences

π∗D• ⊗Y − : D(YX–flat) ' Dsi
X(Y–tors)

and
π′∗D ′• ⊗Y − : D(YX′–flat) ' Dsi

X′(Y–tors).

Proposition 10.22. In the context above, the triangulated equivalences D(YX′–flat)
' Dsi

X′(Y–tors) and D(YX–flat) ' Dsi
X(Y–tors) from Theorem 7.15 form a commu-

tative square diagram with the triangulated equivalences D(YX′–flat) ' D(YX–flat)
and Dsi

X′(Y–tors) ' Dsi
X(Y–tors) from Corollaries 10.11 and 10.13.

Proof. Notice the natural isomorphism π∗D• ' π′∗τ ∗D• of complexes of quasi-
coherent torsion sheaves on Y. We are given a morphism τ ∗D• −→ D ′• of
complexes of quasi-coherent torsion sheaves on X′, whose cone is coacyclic in
X′–tors. According to the discussion in the beginning of Section 9.9, based
on the existence of a well-defined functor (35) from Section 8.1, the trian-
gulated functors Φτ∗D• = π′∗τ ∗D• ⊗Y − : D(YX′–flat) −→ Dsi

X′(Y–tors) and
ΦD ′• = π′∗D ′• ⊗Y − : D(YX′–flat) −→ Dsi

X′(Y–tors) are naturally isomorphic. �

10.7. Preservation of the semitensor product. Let X be an ind-semi-separated
ind-Noetherian ind-scheme, τ : X′ −→ X be an affine morphism of finite type which is
weakly smooth of relative dimension ≤ d, and π′ : Y −→ X′ be a flat affine morphism
of ind-schemes. Put π = τπ′.

A construction from Section 8.3 (see formula (36)) defines the left derived tensor
product functors

⊗Y,L = ⊗Y/X,L : D(YX–flat)× D(YX–flat) −−→ D(YX–flat)

and
⊗Y,L = ⊗Y/X′,L : D(YX′–flat)× D(YX′–flat) −−→ D(YX′–flat),

endowing the derived categories D(YX–flat) and D(YX′–flat) with tensor triangulated
category structures.

Proposition 10.23. In the context above, the triangulated equivalence D(YX′–flat) '
D(YX–flat) from Corollary 10.11 is an equivalence of tensor triangulated categories.
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Proof. We just have to show that the two constructions of derived functors of tensor
product agree. The definition of a relatively homotopy flat complex of flat pro-quasi-
coherent pro-sheaves on Y was given in Section 8.2. To distinguish the two settings
in the situation at hand, let us speak about π-relatively homotopy flat complexes and
π′-relatively homotopy flat complexes.

The key observation is that every π-relatively homotopy flat complex is π′-relatively
homotopy flat. Indeed, we have YX′–flat ⊂ YX–flat. Furthermore, it follows from
Corollary 10.11 that a complex in YX′–flat is acyclic if and only if it is acyclic in
YX–flat. Hence, given a complex F• in Y–flat, condition (i) from Section 8.2 holds for
F• with respect to the morphism π′ : Y −→ X′ whenever it holds with respect to the
morphism π : Y −→ X. Concerning condition (ii), it is clear from Proposition 10.12
that this condition holds for a given complex F• ∈ C(Y–flat) with respect to the
morphism π′ if and only if it holds with respect to the morphism π.

Now let P• and Q• ∈ C(YX′–flat) be two complexes of X′-flat (hence also X–flat)
pro-quasi-coherent pro-sheaves on Y. Using Proposition 8.8, choose two morphisms
of complexes of X-flat pro-quasi-coherent pro-sheaves F• −→ P• and G• −→ Q•

such that the cones of both morphisms are acyclic in YX–flat, and both the com-
plexes F• and G• ∈ C(Y–flat) are π-relatively homotopy flat complexes of flat pro-
quasi-coherent pro-sheaves on Y. Then both the morphisms can be also viewed as
morphisms of complexes of X′-flat pro-quasi-coherent pro-sheaves on Y, the cones of
both the morphisms are also acyclic in YX′–flat, and both the complexes F• and G•

are also π′-relatively homotopy flat. Thus the tensor product F• ⊗Y G• computes
both the derived functors P• ⊗Y/X,L Q• and P• ⊗Y/X′,L Q•. �

Furthermore, another construction from Section 8.3 (see formula (37)) defines the
left derived tensor product functors

⊗L
Y = ⊗L

Y/X : D(YX–flat)× Dsi
X(Y–tors) −−→ Dsi

X(Y–tors)

and
⊗L

Y = ⊗L
Y/X′ : D(YX′–flat)× Dsi

X′(Y–tors) −−→ Dsi
X′(Y–tors)

endowing the semiderived categories Dsi
X(Y–tors) and Dsi

X′(Y–tors) with triangulated
module category structures over the tensor categories D(YX–flat) and D(YX′–flat),
respectively.

Proposition 10.24. In the context above, the triangulated equivalences D(YX′–flat)
' D(YX–flat) and Dsi

X′(Y–tors) ' Dsi
X(Y–tors) from Corollaries 10.11 and 10.13

preserve the module category structures on Dsi
X(Y–tors) and Dsi

X′(Y–tors) over the
tensor categories D(YX–flat) and D(YX′–flat).

Proof. The argument is similar to the proof of Proposition 10.23. We just have to
show that the two constructions of derived functors of tensor product agree. The
definition of a homotopy Y/X-flat complex of quasi-coherent torsion sheaves on Y
was given in Section 8.2; similarly one defines the homotopy Y/X′-flat complexes.

The key observation is that every homotopy Y/X-flat complex in Y–tors is
Y/X′–flat. This holds because YX′–flat ⊂ YX–flat a complex in YX′–flat is acyclic
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if and only if it is acyclic in YX–flat, while a complex in X′–tors is coacyclic if and
only if its direct image is coacyclic in X–tors.

Now let P• be a complex of X′-flat pro-quasi-coherent pro-sheaves and NNN • be a
complex of quasi-coherent torsion sheaves on Y. Using Proposition 8.8, choose a
morphism of complexes of X-flat pro-quasi-coherent pro-sheaves F• −→ P• whose
cone is acyclic in YX–flat, while F• ∈ C(Y–flat) is a π-relatively homotopy flat
complex of flat pro-quasi-coherent pro-sheaves on Y. Then the same morphism can
be also viewed as a morphism of complexes of X′-flat pro-quasi-coherent pro-sheaves
on Y, its cone is also acyclic in YX′–flat, and the complex F• is also π′-relatively
homotopy flat (as pointed out in the proof of Proposition 10.23).

Using Proposition 8.10, choose a morphism of complexes of quasi-coherent torsion
sheaves GGG • −→ NNN • whose cone has the property that its direct image is coacyclic
in X–tors, while GGG • ∈ C(Y–tors) is a homotopy Y/X-flat complex of quasi-coherent
torsion sheaves on Y. Then the direct image of the cone is also coacyclic in X′–tors,
and GGG • is also a homotopy Y/X′-flat complex. Thus the tensor product F• ⊗Y GGG •

computes both the derived functors P• ⊗L
Y/X NNN • and P• ⊗L

Y/X′ NNN
•. �

Theorem 10.25. Let X be an ind-semi-separated ind-Noetherian ind-scheme,
τ : X′ −→ X be an affine morphism of finite type which is weakly smooth of relative
dimension ≤ d, and π′ : Y −→ X′ be a flat affine morphism of ind-schemes. Put
π = τπ′. Let D• be a dualizing complex on X and D ′• be the related dualizing
complex on X′, as per the rule of Lemma 10.21. Then the triangulated equiva-
lence Dsi

X′(Y–tors) ' Dsi
X(Y–tors) from Corollary 10.13 is an equivalence of tensor

triangulated categories with the semitensor product operations

♦π′∗D ′• : Dsi
X′(Y–tors)× Dsi

X′(Y–tors) −−→ Dsi
X′(Y–tors)

and
♦π∗D• : Dsi

X(Y–tors)× Dsi
X(Y–tors) −−→ Dsi

X(Y–tors).

as in formula (38) from Section 8.4.

Proof. Follows from Proposition 10.22 together with Proposition 10.23 or 10.24. �

11. Some Infinite-Dimensional Geometric Examples

In this section we discuss several examples illustrating the nature of infinite-
dimensional algebro-geometric objects for which the constructions and results of
Sections 7–10 are designed. All the examples below in this section will be those
of flat affine morphisms of ind-schemes π : Y −→ X, where X is an ind-separated
ind-scheme of ind-finite type over a field k.
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11.1. The Tate affine space example. The following example, while geometrically
very simple (a trivial bundle), has unusual and attractive invariance properties. The
idea (following [7, Example 7.11.2(ii)] or [58, Example 1.3(1)]) is to consider vector
spaces as a kind of affine schemes or, as it may happen, ind-affine ind-schemes.

(0) Let X be a scheme over a field k. Then, in the algebro-geometric parlance, by a
“k-point on X” one means a morphism Speck −→ X of schemes over k (i. e., a section
of the structure morphism X −→ Spec k). More generally, given a commutative
k-algebra K, by a “K-point on X” one means a morphism SpecK −→ X of schemes
over k (i. e., a morphism forming a commutative triangle diagram with the structure
morphisms SpecK −→ Spec k and X −→ Spec k).

Similarly one can speak of k-points or K-points on an ind-scheme X over k (con-
sidering morphisms of ind-schemes in lieu of the morphisms of schemes). An ind-
scheme X over k is determined by its “functor of points”, assigning to a commutative
k-algebra K the set X(K) of all K-points on X and to every homomorphism of com-
mutative k-algebras K ′ −→ K ′′ the induced map X(K ′) −→ X(K ′′) (cf. the discussion
in the first paragraph of Section 1.2).

(1) Let V be a finite-dimensional k-vector space. We would like to assign a
k-scheme XV to V in such a way that k-points on X would correspond bijectively to
the elements of V . More generally, for a commutative k-algebra K, the K-points on
X will correspond bijectively to elements of the tensor product K ⊗k V .

Here is the (obvious) construction. Consider the dual vector space V ∗ =
Homk(V, k), and consider the symmetric algebra Symk(V

∗). By the definition,
Symk(V

∗) is the commutative k-algebra freely generated by the k-vector space V ∗.
Put XV = Spec Symk(V

∗).

(2) Let V be an infinite-dimensional k-vector space. Then there is no natural
construction of a k-scheme whose k-points would correspond to the elements of V .
More precisely, the functor assigning to an affine scheme SpecK over k the set of
all elements of K ⊗k V is not representable by a scheme over K. However, it is
representable by an ind-affine ind-scheme XV of ind-finite type over k.

Denote by Γ the directed poset of all finite-dimensional vector subspaces U ⊂ V ,
ordered by inclusion. Then the ind-scheme XV is given by the Γ-indexed inductive
system of the affine schemes XU constructed in (1), that is XV = “lim−→”

U∈Γ
XU .

(3) Let V be a linearly compact k-vector space, i. e., a complete, separated topo-
logical k-vector space in which open vector subspaces of finite codimension form a
base of neighborhoods of zero. Denote by V ∗ the vector space of all continuous linear
maps V −→ k. Then V ∗ is an (infinite-dimensional) discrete vector space; the vector
space V can be recovered as the dual vector space V = Homk(V

∗, k) to the discrete
vector space V ∗, with the natural topology on such dual space.

Consider the symmetric algebra Symk(V
∗) (which can be defined as the commuta-

tive k-algebra freely generated by V ∗, or as the direct limit of the symmetric algebras
of finite-dimensional subspaces of V ∗). Put YV = Spec Symk(V

∗). This is the infinite-
dimensional affine scheme corresponding to a linearly compact k-vector space. For
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any commutative k-algebra K, the set of K-points on YV is naturally bijective to the
set of all k-linear maps V ∗ −→ K.

(4) Let V be a locally linearly compact (or Tate) k-vector space, i. e., a (com-
plete, separated) topological vector space admitting a linearly compact open sub-
space. Then the corresponding ind-affine ind-scheme YV (not of ind-finite type)
over k is constructed as follows.

Denote by Γ the directed poset of all linearly compact open subspaces U ⊂ V ,
ordered by inclusion. Then the ind-scheme YV is defined as YV = “lim−→”

U∈Γ
YU .

Here, for any pair of linearly compact open subspaces U ′ ⊂ U ′′ ⊂ V , the inclu-
sion map U ′ −→ U ′′ induces a surjective map of the dual discrete vector spaces
U ′′∗ −→ U ′∗. This linear map, in turn induces a surjective homomorphism of com-
mutative k-algebras Symk(U

′′∗) −→ Symk(U
′∗), which corresponds to the natural

closed immersion of affine schemes YU ′ −→ YU ′′ appearing in the inductive system.

(5) Now let V be a locally linearly compact k-vector space and W ⊂ V be a fixed
linearly compact open subspace. Then the quotient space V/W is discrete in the
induced topology. Put X = XV/W and Y = YV , in the notation of (2) and (4).

Then X is an ind-affine ind-scheme of ind-finite type over k; hence, in particular,
X is ind-semi-separated and ind-Noetherian. The surjective linear map V −→ V/W
induces a flat affine morphism of ind-schemes π : Y −→ X. The fibers of π over the
k-points of X are infinite-dimensional affine schemes isomorphic to YW .

(6) Finally, let us construct a dualizing complex on the ind-Noetherian ind-scheme
X = XV/W . Let U ⊂ V/W be a finite-dimensional vector subspace. Then Symk(U) is
a regular commutative ring of Krull dimension dimk U (in fact, the ring of polynomials
in dimk U variables over k). Choose a (finite, if one wishes) injective resolution E•U
of the free Symk(U)-module Symk(U), and let E•U be the corresponding complex
of injective quasi-coherent sheaves on XU . So E•U is an injective resolution of the
structure sheaf OXU in the category XU–qcoh.

Put D•U = E•U ⊗k Λdimk U
k (U∗)[dimk U ]. Here Λdimk U

k (U∗)[dimk U ] is a complex of
k-vector spaces whose only term is the one-dimensional top exterior power of the
vector space U∗, placed in the cohomological degree − dimk U . Then D•U is a dualizing
complex on XU . Moreover, for any pair of finite-dimensional subspaces U ′ ⊂ U ′′ ⊂
V/W and the related closed immersion of affine schemes iU ′U ′′ : XU ′ −→ XU ′′ , there
is a natural homotopy equivalence D•U ′ ' i!U ′U ′′D•U ′′ of complexes of injective quasi-
coherent sheaves on XU ′ .

It remains to glue the system of dualizing complexes D•U on the schemes XU into
a dualizing complex (of injective quasi-coherent torsion sheaves) D• on the ind-
scheme XV/W . For this purpose, we assume that V/W is a vector space of at most
countable dimension over k (so X = XV/W and Y = YV are ℵ0-ind-schemes). Then
the construction of Example 4.7 does the job.

(7) Notice that, in the context of (6), the complex D•U has its only cohomology
sheaf situated in the negative cohomological degree − dimk U . Assuming that V/W
is countably infinite-dimensional vector space and looking into the construction of
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Example 4.7 keeping exactness of the functors of direct image (under a closed im-
mersion) and direct limit in mind, one can see that D• is an acyclic complex of
quasi-coherent torsion sheaves on XV/W . The only cohomology sheaf just runs to
the cohomological degree −∞ and disappears in the direct limit as dimk U grows to
infinity. Hence π∗D• is an acyclic complex of quasi-coherent torsion sheaves on YV .
These acyclic complexes, representing quite nontrivial objects in the coderived and
semiderived categories, are the unit objects of the respective tensor structures given
by the cotensor and semitensor product operations!

(8) At last, let us discuss the invariance properties of the constructions above with
respect to replacing a linearly compact open subspace W ⊂ V with another linearly
compact open subspace.

Let W ′ and W ′′ ⊂ V be two linearly compact open subspaces. Then W = W ′ +
W ′′ ⊂ V is a linearly compact open subspace as well. The quotient spaces W/W ′

and W/W ′′ are finite-dimensional, so the morphisms of ind-schemes of ind-finite type
X′ = XV/W ′ −→ XV/W = X and X′′ = XV/W ′′ −→ XV/W = X induced by the
surjective linear maps of discrete vector spaces V/W ′ −→ V/W and V/W ′′ −→ V/W
are affine and weakly smooth (in fact, smooth) of finite relative dimension. Hence
Corollary 10.13 tells that the class of morphisms in C(Y–tors) or K(Y–tors) which
are inverted in order to construct the semiderived category Dsi

X′(Y–tors) coincides
with the class of morphisms of complexes which are inverted in order to construct
the semiderived category Dsi

X′′(Y–tors). In other words, the semiderived category
of quasi-coherent torsion sheaves on the ind-scheme Y = YV is determined by the
locally linearly compact topological vector space V , and does not depend on the choice
of a linearly compact open subspace W ⊂ V .

(9) The invariance property of the semitensor product operation ♦π∗D• on
Dsi

X(Y–tors) is only slightly more complicated. The relative dimension dimW ′/W ′′ ∈
Z is defined as the difference dimk W̃/W ′′−dimk W̃/W ′ = dimkW

′/W−dimkW
′′/W ,

where W̃ and W ⊂ V are arbitrary linearly compact open subspaces such that W ⊂
W ′∩W ′′ and W ′+W ′′ ⊂ W̃ . The relative determinant detW ′/W ′′ ∈ k–vect is a one-

dimensional k-vector space defined as detV ′/W ′′ = detk(W̃/W ′′)⊗k detk(W̃/W ′)∗ =

detk(W
′/W ) ⊗k (detkW

′′/W )∗, where detk(U) = Λdimk U
k (U) for a finite-dimensional

k-vector space U . Here the equality signs mean natural isomorphisms.
Then the functor (detW ′/W ′′)[dimW ′/W ′′]⊗k Id : Dsi

X′(Y–tors) −→ Dsi
X′′(Y–tors)

is a tensor triangulated equivalence between the two tensor triangulated categories,
with the tensor structures given by the constructions above. In particular, this functor
takes the unit object to the unit object. Here (detW ′/W ′′)[dimW ′/W ′′] is a complex
of k-vector spaces in which the one-dimensional vector space detW ′/W ′′ sits in the
cohomological degree − dimW ′/W ′′ (and the components in all the other cohomo-
logical degrees vanish). This is the conclusion one obtains from Theorem 10.25.

Example 11.1. Let us spell out in coordinate notation an important particular case
of the above example. Let k((t)) be the k-vector space of formal Laurent power series
in a variable t over the field k, endowed with the usual topology in which the vector
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subspaces tnk[[t]] ⊂ k((t)), n ∈ Z, form a base of neighborhoods of zero. Then
V = k((t)) is a locally linearly compact topological vector space over k.

A generic element of k((t)) has the form f(t) =
∑∞

n=−N xnt
n, where N ∈ Z and

xn ∈ k for all n ∈ Z. So xn : V = k((t)) −→ k are continuous linear functions; we
will consider them as coordinates on the ind-scheme YV .

Let W ⊂ V be the linearly compact open subspace W = k[[t]] ⊂ k((t)). Then
the ℵ0-ind-scheme X = XV/W can be described, in terms of the anti-equivalence
of categories from Example 1.6(2), as XV/W = SpiA, where A is the topological
commutative ring A = lim←−n>0

k[x−n, . . . , x−1] with the topology of projective limit

of the discrete polynomial rings An = k[x−n, . . . , x−1]. Here the transition map
An+1 −→ An in the projective system takes x−n−1 to 0 and x−i to x−i for i ≤ n.

The ℵ0-ind-scheme Y = YV can be similarly described, in terms of the same
anti-equivalence of categories, as YV = SpiR, where R is the topological com-
mutative ring R = lim←−n>0

k[x−n, . . . , x−1, x0, x1, . . . ] with the topology of projec-

tive limit of the discrete ring of polynomials in infinitely many variables Rn =
k[x−n, . . . , x−1, x0, x1, . . . ]. The transition map Rn+1 −→ Rn in the projective sys-
tem of rings takes x−n−1 to 0 and xi to xi for i ≥ −n. The flat affine morphism of
ind-schemes π : YV −→ XV/W corresponds to the natural injective continuous ring
homomorphism A −→ R, which can be obtained as the projective limit of the natural
subring inclusions An −→ Rn.

Following the discussion in Section 2.4(6), the Grothendieck abelian category
X–tors of quasi-coherent torsion sheaves on X is equivalent to the category A–discr
of discrete A-modules. The abelian category A–discr can be simply described in
explicit terms as the category of modules M over the ring of polynomials in infinitely
many variables A = k[. . . , x−3, x−2, x−1] having the property that for every b ∈ M
there exists n > 0 such that x−ib = 0 for all i > n. The Grothendieck abelian
category Y–tors of quasi-coherent torsion sheaves on Y is equivalent to the category
R–discr of discrete R-modules, which explicitly means modules NNN over the ring of
polynomials in doubly infinitely many variables R = k[. . . , x−2, x−1, x0, x1, . . . ] with
the property that for every b ∈NNN there exists n > 0 such that x−ib = 0 for all i > n
(while no condition is imposed on xib for i ≥ 0).

So the obvious forgetful functor R–mod −→ A–mod induced by the subring inclu-
sion A −→ R takes discrete R-modules to discrete A-modules. The forgetful functor
R–discr −→ A–discr corresponds, under the above equivalences between the sheaf
and module categories, to the direct image functor π∗ : Y–tors −→ X–tors, in terms
of which the semiderived category Dsi

X(Y–tors) is defined.
Finally, the dualizing complex D• on X as per the construction in (6) is a complex

of injective discrete modules over A (concentrated, if one wishes, in the nonpositive
cohomological degrees; cf. Remarks 5.3(3–5)) with the following property. For every
n > 0, the subcomplex D•n of all elements annihilated by . . . , x−n−3, x−n−2, x−n−1

in D• is a complex of injective An-modules homotopy equivalent to an injective
resolution of the free An-module with one generator k[x−n, . . . , x−1] dx−n∧ · · ·∧dx−1

shifted cohomologically by [n].
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As explained in (8–9), the results of Section 10 imply that the semiderived cate-
gory Dsi

X(Y–tors) is preserved by all the continuous linear coordinate changes in the
topological vector space V = k((t)). This means all the bijective continuous k-linear
maps k((t)) −→ k((t)) with continuous inverse maps. Moreover, the semitensor
product operation on Dsi

X(Y–tors) is also preserved by such coordinate changes, up
to dimensional cohomological shifts and determinantal twists.

Question 11.2. In the context of Example 11.1, one can write Dsi
X(Y–tors) =

Dsi
A(R–discr), referring to the equivalences of abelian categories Y–tors ' R–discr

and X–tors ' A–discr. Is the semiderived category Dsi
A(R–discr) preserved by arbi-

trary continuous polynomial coordinate changes, i. e., all the automorphisms of the
topological ring R ?

11.2. Cotangent bundle to discrete projective space. Let V be an infinite-
dimensional discrete k-vector space. Then the projectivization of V is an ind-scheme
P(V ) of ind-finite type over k, defined informally as the space of all one-dimensional
vector subspaces in V (cf. [58, Example 1.3(2)]). Any one-dimensional vector sub-
space L ∈ V corresponds to a k-point l : Spec k −→ P(V ).

The tangent space to P(V ) at the point l can be computed as TlP(V ) =
Homk(L, V/L); so it is a discrete k-vector space (as one would expect). Accordingly,
the cotangent space T ∗l P(V ) = Homk(V/L, L) is a linearly compact k-vector space.
Following Section 11.1(3), there is an infinite-dimensional affine scheme correspond-
ing to T ∗l P(V ), described as YT ∗l P(V ) = Spec Symk(TlP(V )). So, denoting by Y the
total space of the cotangent bundle to X = P(V ), one would expect the fibration
π : Y −→ X to be a flat affine morphism of ind-schemes. In order to show that this
is indeed the case, let us explain how to formalize this informal discussion.

(1) Let U be a finite-dimensional k-vector space. Then the projectivization P (U)
is defined as the projective spectrum of the graded ring Symk(U

∗), i. e., P (U) =
Proj Symk(U

∗) (where the grading on the commutative k-algebra Symk(U
∗) is defined

by the rule that the elements of U∗ ⊂ Symk(U
∗) have degree 1). This means that

the scheme points of P (U) correspond bijectively to homogeneous prime ideals in the
graded ring R = Symk(U

∗) not containing (in other words, different from) the ideal⊕
n>0Rn ⊂ R of all elements of positive degree.
For every element r ∈ R1, the subset in ProjR consisting of all homogeneous prime

ideals not containing r is an affine open subscheme in ProjR naturally isomorphic
to SpecR[r−1]0, where R[r−1] is the Z-graded ring obtained by inverting the element
r ∈ R1 and R[r−1]0 ⊂ R[r−1] is the subring of all elements of degree 0.

Let U ′′ be a finite-dimensional k-vector space and U ′ ⊂ U ′′ be a vector subspace.
Then the surjective k-linear map U ′′∗ −→ U ′∗ induces a surjective homomorphism
of graded rings R′′ = Symk(U

′′∗) −→ Symk(U
′∗) = R′. Hence the induced closed

immersion of projective spectra P (U ′) = ProjR′ −→ ProjR′′ = P (U ′′).

(2) Let M be a graded module over the graded ring R = Symk(U
∗). Then

a quasi-coherent sheaf M̃ over P (U) = ProjR is assigned to M in the following

way. For every element r ∈ R1, the restriction of M̃ to the affine open subscheme
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SpecR[r−1]0 ⊂ ProjR is the quasi-coherent sheaf over SpecR[r−1]0 corresponding
to the R[r−1]0-module M [r−1]0. Here M [r−1] = R[r−1] ⊗R M and M [r−1]0 is the
degree 0 component of the Z-graded module M [r−1].

The functor M 7−→ M̃ from the abelian category of graded R-modules to the
abelian category of quasi-coherent sheaves on ProjR is exact and preserves coprod-
ucts; it is also a tensor functor between the two tensor categories. In particular, the

functor M 7−→ M̃ takes flat graded R-modules F to flat quasi-coherent sheaves F̃

on ProjR. One has M̃ = 0 if and only if, for every b ∈ M , there exists n ≥ 1 such

that Rib = 0 in M for all i ≥ n. The functor M 7−→ M̃ also takes finitely generated
graded R-modules to coherent sheaves on P (U) = ProjR.

For any graded R-module M and any integer n ∈ Z, denote by M(n) the graded
R-module with the components M(n)i = Mn+i (and the same action of R as in M).
The tautological line bundle OP (V )(−1) on P (V ) is defined informally by the rule that
the line L is the fiber of OP (V )(−1) over a k-point l : Spec k −→ P (V ) corresponding
to a one-dimensional k-vector subspace L ⊂ V . More formally, the quasi-coherent
sheaf OP (V )(n) on P (V ) (for any n ∈ Z) corresponds to the graded R-module R(n).

Accordingly, one has M̃(n) = M̃(n) for any graded R-module M , where M(n) =
OP (V )(n)⊗OP (V )

M for any quasi-coherent sheaf M on P (V ).
Let U ′ ⊂ U ′′ be a vector subspace in a finite-dimensional k-vector space, and

let R′′ −→ R′ be the related surjective morphism of graded rings, as in (1). De-
note by iU ′U ′′ : P (U ′) −→ P (U ′′) the related closed immersion of projective spaces

over k. Let M ′′ be a graded R′′-module and M̃ ′′ be the related quasi-coherent sheaf

on P (U ′′). Then the quasi-coherent sheaf i∗U ′U ′′M̃
′′ on P (U ′) corresponds to the

graded R′-module R′ ⊗R′′ M ′′.

(3) Let V be a discrete k-vector space. Denote by Γ the directed poset of all finite-
dimensional vector subspaces U ⊂ V , ordered by inclusion. The projectivization of
V is defined as the ind-scheme P(V ) = “lim−→”

U∈Γ
P (U), where the transition maps

iU ′U ′′ : P (U ′) −→ P (U ′′) are the ones defined above in (1–2).
Our aim is to construct a flat pro-quasi-coherent pro-sheaf T on P(V ) correspond-

ing to the tangent bundle. So, for any k-point l : Speck −→ P(V ) and the related
one-dimensional vector subspace L ⊂ V , the fiber of T over l should be the discrete
k-vector space Homk(L, V/L) ' (L∗ ⊗k V )/k.

Let U ⊂ V be a finite-dimensional vector subspace. We start with constructing the
restriction of T onto the closed subscheme P (U) ⊂ P(V ). Denoting by iU : P (U) −→
P(V ) the closed immersion morphism, we would like to construct the quasi-coherent
sheaf TU = i∗UT on the scheme P (U).

The infinite-dimensional vector bundle V (1) on P (U) corresponds to the graded
module V ⊗kR(1) over the graded ring R = Symk(U

∗). The degree −1 component of
this graded module is the vector space V , and the degree 0 component of the vector
space V ⊗k U

∗. The latter vector space contains a canonical element e ∈ V ⊗k U
∗ '

Homk(U, V ) corresponding to the identity map U −→ V .

159



Let fU : R −→ V ⊗k R(1) be the graded R-module map taking the free generator
1 ∈ R to the element e ∈ V ⊗k U

∗. Denote by TU = coker(fU) the cokernel of fU
taken in the category of graded R-modules. By definition, the quasi-coherent sheaf
TU on P (U) = ProjR corresponds to the graded R-module TU .

(4) The gradedR-module TU is not flat, but it is “flat up to torsionR-modules”, in a
suitable sense; so the quasi-coherent sheaf TU on P (U) is flat. More precisely, the map
fU : R −→ V ⊗kR(1) factorizes as the composition R −→ U ⊗kR(1) −→ V ⊗kR(1),
where the split monomorphism of free graded R-modules U ⊗kR(1) −→ V ⊗kR(1) is
induced by the inclusion of k-vector spaces U −→ V . The cokernel of the morphism
R −→ U ⊗k R(1) is finitely generated graded R-module; the corresponding coherent
sheaf on P (U) is the locally free sheaf corresponding to the tangent bundle to P (U).

To see algebraically that the cokernel of the graded R-module morphism R −→
U ⊗k R(1) corresponds to a locally free coherent (or at least, a flat quasi-coherent)
sheaf on P (U), one can consider the Koszul complex

0 −→ R −−→ U ⊗k R(1) −→ Λ2
k(U)⊗k R(2) −→ · · · −→ Λdimk U(U)⊗k R(dimk U),

where Λn
k(U) are the exterior powers of the k-vector space U . This complex is a

free graded resolution of the graded R-module Λdimk U(U)(dimk U), which is a one-
dimensional k-vector space viewed as a graded R-module concentrated in the single

degree − dimk U . The exact functor M 7−→ M̃ annihilates this graded R-module,
so this functor takes the Koszul complex to an exact finite complex of locally free
coherent sheaves on P (U). Accordingly, all the graded R-modules of cycles and
boundaries of the Koszul complex are also taken to locally free coherent sheaves on

P (U) by the functor M 7−→ M̃ .

(5) Let U ′ ⊂ U ′′ ⊂ V be two finite-dimensional subspaces in our discrete k-vector
space V . Then the functor R′ ⊗R′′ − takes the graded R′′-module morphism fU ′′
to the graded R′-module morphism fU ′ . Hence we have a natural isomorphism of
graded R′-modules TU ′ ' R′⊗R′′ TU ′′ , and consequently a natural isomorphism TU ′ '
i∗U ′U ′′TU ′′ of flat quasi-coherent sheaves on P (U ′).

Now the rule T(P (U)) = TU for all U ∈ Γ defines the desired flat pro-quasi-coherent
pro-sheaf T on the ind-scheme P(V ).

(6) Similarly to the symmetric algebra of a vector space, one can define the sym-
metric algebra of a module over a commutative ring S. Given an S-module N , the
symmetric algebra SymS(N) can be defined as the commutative S-algebra freely gen-
erated by the S-module N . When F is a free S-module, SymS(F ) is a free S-module,
too; and the (nonadditive) functor N 7−→ SymS(N) preserves direct limits; so when
F is a flat S-module, SymS(F ) is a flat S-algebra.

Furthermore, given a quasi-coherent sheaf N on a scheme Z, one defines the quasi-
coherent commutative algebra SymZ(N ) on Z (in the sense of Section 3.6) by the
rule SymZ(N )(W ) = SymO(W )(N (W )) for all the affine open subschemes W ⊂ Z.
Clearly, SymZ(F) is a flat quasi-coherent commutative algebra on Z whenever F is
a flat quasi-coherent sheaf on Z. For every morphism of schemes f : Z ′ −→ Z ′′ and
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a quasi-coherent sheaf N ′′ on Z ′′, one has a natural isomorphism SymZ′(f
∗N ′′) '

f ∗ SymZ′′(N ′′) of quasi-coherent algebras on Z ′.

(7) In the context of (3–5), we put AU = SymP (U) TU for every finite-dimensional
vector subspace U in the given discrete k-vector space V . So AU is a flat quasi-
coherent algebra on the projective space P (U). Then the rule A(P (U)) = AU defines
a flat pro-quasi-coherent commutative algebra A on the ind-scheme X = P(V ). The
ind-scheme Y together with the flat affine morphism of ind-schemes π : Y −→ X
corresponds to the pro-quasi-coherent algebra A on X via the construction of Propo-
sition 3.12. This is the desired flat affine morphism of ind-schemes corresponding to
the cotangent bundle on the ind-projective space P(V ).

(8) Assuming that the dimension of V is at most countable, one can construct a
dualizing complex D• on X = P(V ) following the approach of Remarks 5.3(3–5).
Notice that, similarly to Section 11.1(7), the dualizing complex D• is an acyclic
complex of quasi-coherent torsion sheaves on X whenever V is a k-vector space of
(countably) infinite dimension.

11.3. Universal fibration of quadratic cones in linearly compact vector
space. Let W be an infinite-dimensional discrete k-vector space and W ∗ be the dual
linearly compact k-vector space. Then the elements of the vector space Sym2

k(W )
correspond to continuous quadratic functions q : W ∗ −→ k. It is worth noticing that
any such quadratic function actually factorizes through a finite-dimensional discrete
quotient vector space of W ∗.

The zero locus Yq of any nonzero continuous quadratic function q : W ∗ −→ k is
an infinite dimensional affine scheme, or more specifically a closed subscheme in the
affine scheme YW ∗ corresponding to the linearly compact topological vector space
W ∗ under the construction of Section 11.1(3). This closed subscheme is an infinite-
dimensional quadratic cone. Such quadratic cones Yq ⊂ YW ∗ are parametrized by
nonzero continuous quadratic functions q : W ∗ −→ k viewed up to a multiplication
by a scalar from k. In other words, the space of parameters of the quadratic cones
in W ∗ is the ind-scheme P(V ) from Section 11.2(3), where the infinite-dimensional
discrete k-vector space V is constructed as V = Sym2

k(W ).
This informal discussion suggests that there should be a flat affine morphism of

ind-schemes π : Y −→ X = P(V ) whose fibers over the k-points of P(V ) are the
quadratic cones Yq. The aim of this section is to spell out a precise construction of
the ind-scheme Y and the morphism π.

(0) Let us first return to the discussion of the ind-scheme P(V ) from Sec-
tion 11.2(3). The approach hinted at in Section 11.1(0) suggests to describe schemes
and ind-schemes by their “functors of points”, i. e., the functors they represent on
the category of affine schemes. For our present purposes, let us restrict ourselves
to field extensions k −→ K. One easly observes that, for any such field extension,
the set X(K) of K-points in X = P(V ) is naturally bijective to the set of all
one-dimensional vector subspaces L ⊂ K ⊗k V in the K-vector space K ⊗k V . (The
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case of an arbitrary commutative k-algebra K is considerably more complicated;
see [58, Example 1.3(2)].)

(1) Let W be a discrete k-vector space. The discrete vector space Sym2
k(W ) can

be defined as the degree 2 component of the graded k-algebra Symk(W ), that is, the
vector subspace in the k-algebra Symk(W ) spanned by the products w′w′′ with w′,
w′′ ∈ W . Put V = Sym2

k(W ).
Let U ⊂ V be a finite-dimensional vector subspace. Consider the graded ring

R = Symk(U
∗). Then the tensor product Symk(W )⊗k R is a bigraded commutative

R-algebra. For the purposes of applying the functor M 7−→ M̃ (see Section 11.2(2))
we will consider the grading on Symk(W ) ⊗k R induced by the grading of R. Then

the functor M 7−→ M̃ takes the graded R-algebra Symk(W ) ⊗k R to the quasi-
coherent algebra Symk(W )⊗kOP (U) on the scheme P (U). This quasi-coherent algebra
corresponds to the affine morphism of schemes YW ∗×kP (U) −→ P (U), where YW ∗ =
Spec Symk(W ) (as in Section 11.1(3)).

(2) Consider the free graded module Symk(W )⊗k R(−1) over the graded algebra

Symk(W ) ⊗k R. Applying the functor M 7−→ M̃ to this graded module produces
the quasi-coherent module Symk(W ) ⊗k OP (U)(−1) over the quasi-coherent algebra
Symk(W )⊗k OP (U) on P (U).

The free graded module Symk(W )⊗kR(−1) over the graded algebra Symk(W )⊗k
R is spanned by the element 1 sitting in degree 1 (in the grading induced by the
grading of R). The degree 0 component of the graded algebra Symk(W )⊗k R is the
algebra Symk(W ), and the degree 1 component is the vector space Symk(W )⊗kU

∗ '
Homk(U, Symk(W )). The natural injective k-linear map U −→ V ' Sym2

k(W ) −→
Symk(W ) defines a canonical element e ∈ Symk(W )⊗k U

∗.
Let fU : Symk(W ) ⊗k R(−1) −→ Symk(W ) ⊗k R be the morphism of graded

R-modules taking the generator 1 ∈ Symk(W ) ⊗k R(−1) to the element e ∈
Symk(W ) ⊗k U

∗. The morphism fU is injective because the ring Symk(W ) ⊗k R '
Symk(W ⊕ U∗) has no zero-divisors. Denote by CU the cokernel of fU taken in
the category of graded R-modules. So CU is naturally a graded R-algebra (namely,
the quotient algebra of Symk(W ) ⊗k R by the ideal generated by the homogeneous
element e). By the definition, the quasi-coherent algebra CU on P (U) = ProjR is

obtained by applying the functor M 7−→ M̃ to the graded R-algebra CU .

Our next aim is to show that the quasi-coherent sheaf CU on P (U) is flat.

Lemma 11.3. Let f : G −→ F be a monomorphism of locally free coherent sheaves
on a Noetherian scheme X. Assume that, for every field K and any morphism of
schemes i : SpecK −→ X, the morphism of coherent sheaves on SpecK (i. e., of
K-vector spaces) i∗f : i∗G −→ i∗F is injective. Then the cokernel F/f(G) of the
monomorphism f is a locally free sheaf on X.

Proof. This lemma is well-known, so we restrict ourselves to pointing out that it
remains true for flat quasi-coherent sheaves in lieu of locally free coherent ones. If
f : G −→ F is a monomorphism of flat quasi-coherent sheaves on a Noetherian scheme
X and, for every i : SpecK −→ X as in the lemma, the morphism i∗f : i∗G −→ i∗F
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is injective, then F/f(G) is a flat quasi-coherent sheaf on X. This is (a particular
case of) the result of [10, Remark 2.3], which is based on [2, Proposition 5.3.F]; it
also follows from [10, Theorem 1.1]. �

(3) One can start from observing that, for any finite-dimensional subspace
U ⊂ Sym2

k(W ), there exists a finite-dimensional subspace W ⊂ W such that
U ⊂ Sym2

k(W ). The map fU is the direct limit of the similar maps f̄U
with the vector space W replaced by its finite-dimensional subspaces W sat-
isfying this inclusion. Furthermore, the morphism of free graded R-modules
f̄U : Symk(W ) ⊗k R(−1) −→ Symk(W ) ⊗k R is the direct sum of the morphisms of
finitely generated free graded R-modules Symn

k(W )⊗k R(−1) −→ Symn+2
k (W )⊗k R,

where n = 0, 1, 2, . . . These observations make Lemma 11.3 applicable as it is stated
(for locally free coherent sheaves), and one does not even need the more general
version of it suggested in the proof.

Let K be a field and l : SpecK −→ P (U) be a morphism of schemes. Then the
composition SpecK −→ P (U) −→ Spec k makes k a subfield in K. As mentioned
above in (0), the morphism l corresponds to a one-dimensional vector subspace L ⊂
K⊗kU ⊂ K⊗k Sym2

k(W ) ' Sym2
K(K⊗kW ) ⊂ K⊗kV . So any nonzero vector q ∈ L

defines a quadratic function q : (K ⊗kW )∗ −→ K, which factorizes as (K ⊗kW )∗ �

(K ⊗k W )∗
q̄−→ K. Applying the functor M 7−→ M̃ and then the functor i∗ to the

morphism of graded R-modules f̄U : Symk(W ) ⊗k R(−1) −→ Symk(W ) ⊗k R, one
obtains the morphism of K-vector spaces SymK(K⊗kW )⊗K L −→ SymK(K⊗kW )
taking a tensor a ⊗K q̄ with a ∈ Symn

K(K ⊗k W ) and q̄ ∈ L ⊂ Sym2
K(K ⊗k W )

to the vector aq̄ ∈ Symn+2
K (K ⊗k W ) (where the multiplication is performed in the

symmetric algebra SymK(K ⊗k W )). This map of K-vector spaces is injective.

(4) According to Lemma 11.3, it follows that the quasi-coherent algebra CU
on the projective space P (U) is flat. Now let U ′ ⊂ U ′′ ⊂ V be two finite-
dimensional subspaces in the k-vector space V = Sym2

k(W ). Put R′ = Symk(U
′∗)

and R′′ = Symk(U
′′∗). As explained in Section 11.2(1–2), we have a surjective

morphism of graded rings R′′ −→ R′ inducing a closed immersion of the projective
spectra iU ′U ′′ : P (U ′) −→ P (U ′′).

Similarly to Section 11.2(5), the functor R′ ⊗R′′ − takes the morphism of graded
R′′-modules fU ′′ to the morphism of graded R′-modules fU ′ . Hence we have a natural
isomorphism of graded R′-modules, and in fact of graded commutative R′-algebras,
CU ′ ' R′ ⊗R′′ CU ′′ , and consequently a natural isomorphism CU ′ ' i∗U ′U ′′CU ′′ of flat
quasi-coherent commutative algebras on P (U ′).

Finally, the rule C(P (U)) = CU defines a flat pro-quasi-coherent commutative al-
gebra C on the ind-scheme X = P(V ). The ind-scheme Y together with the flat
affine morphism of ind-schemes π : Y −→ X corresponds to the pro-quasi-coherent
algebra C on X via the construction of Proposition 3.12. This is the desired flat affine
morphism of ind-schemes corresponding to the P(V )-parametric family of quadratic
cones in the linearly compact topological vector space W ∗.
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(5) To make the setting for possible application of the constructions and results of
Sections 7–9 complete, it remains to specify a dualizing complex on the ind-scheme
X = P(V ). It was mentioned in Section 11.2(8) how this can be done (assuming the
dimension of the k-vector space W , hence also V , is at most countable).

Appendix. The Semiderived Category for a Nonaffine Morphism

Let X be an ind-semi-separated ind-Noetherian ind-scheme, Y be an ind-semi-
separated ind-scheme, and π : Y −→ X be a nonaffine flat morphism of ind-schemes.
The aim of this appendix is to spell out a definition of the Y/X-semiderived category
Dsi

X(Y–tors) of quasi-coherent torsion sheaves on Y in this context.

A.1. Becker’s coderived category. In this appendix, we will use a different ap-
proach to the definition of the coderived category than in the main body of the
paper (cf. Section 4.4). The relevant references for Becker’s coderived category
are [23, 37, 6, 62, 56].

Let E be an exact category with enough injective objects. Notice that in any such
exact category the infinite coproduct functors are exact (if the coproducts exist). A
complex E• in E is said to be Becker coacyclic (or “coacyclic in the sense of Becker”) if,
for any complex of injective objects J• in E, the complex of morphisms HomE(E•, J•)
is acyclic (as a complex of abelian groups).

Lemma A.4. (a) The totalization of any short exact sequence of complexes in E is
a Becker coacyclic complex.

(b) The coproduct of any family of Becker coacyclic complexes, if it exists in K(E),
is a Becker coacyclic complex.

(c) Consequently, if the infinite coproducts exist in E, then any coacyclic complex
in the sense of Section 4.4 is also coacyclic in the sense of Becker.

Proof. Parts (a–b) are (a straightforward generalization of) [56, Lemma 9.1]; they are
closely related to Proposition 4.15(a). Part (c) follows immediately from (a–b). �

Lemma A.5. If the category E is abelian with the abelian exact structure, then any
coacyclic complex in E is acyclic.

Proof. A complex E• in E is acyclic if and only if the complex of abelian groups
HomE(E•, J) is acyclic for any injective object J ∈ E (viewed as a one-term complex
of injective objects). �

The Becker coderived category Dbco(E) is defined as the triangulated quotient cat-
egory of the homotopy category K(E) by the thick subcategory of Becker coacyclic
complexes. It is clear from Lemma A.4(c) that Becker’s coderived category of an exact
category E with infinite coproducts and enough injectives is (at worst) a triangulated
quotient category of the coderived category in the sense of Section 4.4. So there is
a triangulated Verdier quotient functor Dco(E) −→ Ebco(E) forming a commutative
triangle diagram with the triangulated Verdier quotient functors K(E) −→ Dco(E)
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and K(E) −→ Dbco(E). When E is abelian, it follows from Lemma A.5 that there is
also a triangulated Verdier quotient functor Dbco(E) −→ D(E).

Proposition A.6. Let E be an exact category with infinite coproducts and enough
injective objects such that the full subcategory of injective objects Eproj is preserved by
the infinite coproducts in E (e. g., this holds for any locally Noetherian Grothendieck
abelian category with the abelian exact structure). Then the canonical functor
Dco(E) −→ Dbco(E) is a triangulated equivalence.

Proof. Follows from Proposition 4.15(b). The conditions on the exact category E can
be relaxed a bit; see condition (∗) in [41, Section 3.7] or (even more generally) the
results of [44, Section A.6]. �

In is an open problem whether the functor Dbco(E) −→ Dco(E) is a triangulated
equivalence for every Grothendieck abelian category E (with the abelian exact struc-
ture), or even for the category of modules over an arbitrary ring. See, e. g., [51,
Example 2.5(3)] for a discussion. The advantage of Becker’s coderived category,
though, is that it is known to work well for all Grothendieck abelian categories.

Theorem A.7. Let A be a Grothendieck abelian category and Ainj ⊂ A be its full
subcategory of injective objects. Then the composition K(Ainj) −→ K(A) −→ Dbco(A)
of the inclusion functor K(Ainj) −→ K(A) and the Verdier quotient functor K(A) −→
Dbco(A) is a triangulated equivalence K(Ainj) ' Dbco(A).

Proof. This result can be found in [24, Corollary 5.13], [37, Theorem 3.13], or [56,
Corollary 9.4]. �

Lemma A.8. Let A and B be Grothendieck abelian categories, and let F : A −→ B
be an exact functor which has a right adjoint (equivalently, F is exact and preserves
coproducts). Then the functor F takes Becker coacyclic complexes in A to Becker
coacyclic complexes in B.

Remark A.9. An analogue of Lemma A.8 holds for coacyclic complexes in the sense
of Section 4.4 under weaker assumptions: any exact functor preserving coproducts,
acting between exact categories with exact coproducts, preserves coacyclicity. This
assertion, following immediately from the definitions, was mentioned and used many
times throughout the main body of this paper.

Proof of Lemma A.8. It is a particular case of the Special Adjoint Functor Theorem
that a functor between cocomplete abelian categories having sets of generators is a left
adjoint if and only if it preserves colimits (equivalently, is right exact and preserves
coproducts). This explains the equivalent reformulation of the lemma’s assumptions
in the parentheses. Now let G : B −→ A be the right adjoint functor to F . Since
the functor F is exact, the functor G takes injectives to injectives. Let A• be a
complex in A and J• be a complex of injective objects in B. Then the isomorphism
of complexes of abelian groups HomB(F (A•), J•) ' HomA(A•, G(J•)) shows that the
complex F (A•) is coacyclic in B whenever a complex A• is coacyclic in A. �
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A.2. Locality of coacyclity on schemes. Let X be an reasonable ind-scheme.
Then the category X–tors of quasi-coherent torsion sheaves on X is a Grothendieck
abelian category (by Theorem 2.4). So it makes sense to speak about Becker coacyclic
complexes in X–tors and the Becker coderived category Dbco(X–tors).

Lemma A.10. Let f : Y −→ X be a flat morphism of reasonable ind-schemes. Then
the inverse image functor f ∗ : X–tors −→ Y–tors takes Becker coacyclic complexes in
X–tors to Becker coacyclic complexes in Y–tors.

Proof. The functor f ∗ is exact by Lemma 7.3 and has a right adjoint by
Lemma 2.10(b), so it remains to apply Lemma A.8. �

Lemma A.11. Let f : Y −→ X be an affine morphism of reasonable ind-schemes.
Then the direct image functor f∗ : Y–tors −→ X–tors takes Becker coacyclic complexes
in Y–tors to Becker coacyclic complexes in X–tors.

Proof. The functor f∗ is exact by Lemma 7.2 and preserves coproducts by
Lemma 7.1(a), so Lemma A.8 is applicable. �

The ideas of the formulations and proofs of the next two lemmas can be found in [12,
Remark 1.3] (where a more complicated setting of quasi-coherent curved DG-modules
is considered).

Lemma A.12. Let X =
⋃
α Uα be an open covering of a Noetherian scheme X.

Let jα : Uα −→ X denote the open immersion morphisms. Then a complex of quasi-
coherent sheavesM• on X is Becker coacyclic if and only if, for every α, the complex
of quasi-coherent sheaves j∗αM• on Uα is Becker coacyclic.

Proof. In fact, by Proposition A.6, there is no difference between the Becker coacyclic-
ity and coacyclicity in the sense of Section 4.4 in the assumptions of this lemma. The
functors j∗α preserve coacyclicity by Lemma A.10; so the “only if” assertion is clear.

To prove the “if”, one says that either by Proposition 4.15(b) or by Theorem A.7
there exists a complex of injective quasi-coherent sheaves J • on X together with
a morphism of complexes M• −→ J • with a coacyclic cone. By Lemma A.10, the
cones of the morphisms j∗αM• −→ j∗αJ • are coacyclic as well. If the complexes j∗αM•

are coacyclic, then it follows that so are the complexes j∗αJ •.
On a Noetherian scheme, injectivity of quasi-coherent sheaves is a local property; so

j∗αJ • is a complex of injective quasi-coherent sheaves on Uα. Any coacyclic complex
of injectives is contractible; so j∗αJ • is a contractible complex. Finally, a complex of
injective objects is contractible if and only if it is acyclic and its objects of cocycles
are injective. As injectivity of sheaves and acyclicity of complexes are local properties
on X, we can conclude that the complex J • ∈ C(X–qcohinj) is contractible. It follows
that the complex M• ∈ C(X–qcoh) is coacyclic. �

Proposition A.13. Let X =
⋃
α Uα be an open covering of a quasi-compact semi-

separated scheme X. Let jα : Uα −→ X denote the open immersion morphisms. Then
a complex of quasi-coherent sheaves M• on X is Becker coacyclic if and only if, for
every α, the complex of quasi-coherent sheaves j∗αM• on Uα is Becker coacyclic.
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Proof. Similarly to the previous lemma, the functors of restriction to open subschemes
preserve coacyclicity by Lemma A.10. So the “only if” assertion is obvious. Moreover,
refining the covering if necessary and using the quasi-compactness, we can assume
that X =

⋃
α Uα is a finite affine open covering of X.

Choose a linear order on the set of indices α, and for any subset of indices
α1 < · · · < αk denote by jα1,...,αk :

⋂k
s=1 Uαk −→ X the open immersion of the

intersection of the open subschemes U1, . . . , Uk in X. Since the scheme X is semi-
separated, the open subscheme

⋂k
s=1 Uαk ⊂ X is affine for all k > 0, and the open

immersion of any affine open subscheme into X is an affine morphism of schemes; so
the morphism jα1,...,αk is affine for all k ≥ 0.

For any quasi-coherent sheaf N on X, the Čech complex

0 −−→ N −−→
⊕

α
jα∗j

∗
αN −−→

⊕
α<β

jα,β ∗ j
∗
α,βN −−→ · · · −−→ 0

is an acyclic finite complex of quasi-coherent sheaves on X (to show the acyclicity,
one observes that the restriction of the Čech complex to each of the open subschemes
Uα ⊂ X is contractible). Therefore, given a complex of quasi-coherent sheaves M•

on X, we have an acyclic finite complex of complexes

(57) 0 −−→ M• −−→
⊕

α
jα∗j

∗
αM• −−→

⊕
α<β

jα,β ∗ j
∗
α,βM• −−→ · · · −−→ 0.

Now, if the complex j∗αM• is coacyclic for every α, then the complex j∗α1,...,αk
M•

is coacyclic for all α1 < · · · < αk with k > 0 (as the restriction to an open subscheme
preserves coacyclicity). Then, by Lemma A.11, the complex jα1,...,αk∗ j

∗
α1,...,αk

M• is a
coacyclic complex of quasi-coherent sheaves on X.

Finally, the total complex of the bicomplex (57) is coacyclic by Lemma A.4(a).
Since the Becker coacyclic complexes form a full triangulated subcategory in
K(X–qcoh), we can conclude that the complex M• is Becker coacyclic. �

Remark A.14. All the results of this Section A.2 are also valid for the coacyclicity
in the sense of Section 4.4 in lieu of the coacyclicity in the sense of Becker (cf.
Remark A.9). The advantage of Becker’s coderived categories for the purposes of the
present appendix is that Theorem A.7 is available for them (specifically, in application
to the categories Y–tors for non-ind-Noetherian ind-schemes Y).

A.3. The semiderived category for a nonaffine morphism of schemes. In
this section, unlike in the rest of the paper, we do not automatically assume all the
schemes to be concentrated (i. e., quasi-compact and semi-separated). We start with
a series of lemmas before proceeding to the key definition.

Lemma A.15. Let A be an abelian category with countable coproducts and enough
injective objects, and let M •

0 −→ M •
1 −→ M •

2 −→ · · · be an inductive system of
complexes in A, indexed by the poset of nonnegative integers. Assume that the complex
M •

n is Becker coacyclic in A for every n ≥ 0. Then the complex lim−→n≥0
M •

n is Becker

coacyclic in A as well.
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Proof. The complex
∐

n≥0M
•
n is Becker coacyclic in A by Lemma A.4(b). The total

complex of the short exact sequence of complexes 0 −→
∐

n≥0M
•
n −→

∐
n≥0M

•
n −→

lim−→n≥0
M •

n is Becker coacyclic by Lemma A.4(a). Since the Becker coacyclic complexes

form a full triangulated subcategory in K(A), it follows that the complex lim−→n≥0
M •

n

is also Becker coacyclic. �

LetX = SpecR be an affine scheme. The principal affine open subschemes inX are
the open subschemes SpecR[r−1] ⊂ R corresponding to the morphisms R −→ R[r−1]
of localization by multiplicative subsets generated by a single element in R. The
principal affine open subschemes form a base of neighborhoods of zero in SpecR, and
the intersection of any two principal affine open subschemes is a principal affine open
subscheme, SpecR[r−1

1 ]×SpecR SpecR[r−1
2 ] = SpecR[(r1r2)−1]. Furthermore, for any

morphism of affine schemes SpecS −→ SpecR, the full preimage of any principal
affine open subscheme in SpecR is a principal affine open subscheme in SpecS.

Lemma A.16. Let R −→ S be a morphism of commutative rings and N • be a
complex of S-modules. Let s ∈ S be an element. Assume that N • is Becker coacyclic
as a complex of R-modules. Then S[s−1]⊗S N • is also Becker coacyclic as a complex
of R-modules.

Proof. The complex of R-modules S[s−1]⊗SN • can be described as the direct limit of

the sequence of morphisms of complexes of R-modules N •
s−→ N •

s−→ N • −→ · · · ,
so Lemma A.15 is applicable. �

Lemma A.17. Let Y =
⋃
α Vα be an affine scheme covered by principal affine

open subschemes. Denote by jα : Vα −→ Y the open immersion morphisms. Let
f : Y −→ X be a morphism of affine schemes, and let N • be a complex of quasi-
coherent sheaves on Y. Then the complex f∗N • of quasi-coherent sheaves on X is
Becker coacyclic if and only if, for every α, the complex f∗jα∗j

∗
αN • of quasi-coherent

sheaves on X is Becker coacyclic.

Proof. If the complex f∗N • is Becker coacyclic in X–qcoh, then Lemma A.16 tells
that the complex f∗jα∗j

∗
αN • is Becker coacyclic in X–qcoh for every α.

Conversely, using quasi-compactness of the affine scheme Y, we can assume that
the set of indices α is finite. Choose a linear order on these indices, and for any subset
of indices α1 < · · · < αk denote by jα1,...,αk :

⋂k
s=1 Vαk −→ Y the open immersion.

Assume that the complex f∗jα∗j
∗
αN • is Becker coacyclic in X–qcoh for every α. Then

Lemma A.16 tells that the complex f∗jα1,...,αk∗ j
∗
α1,...,αk

N • is coacyclic in X–qcoh for

all α1 < . . . < αk and k > 0 (since
⋂k
s=1 Vαk is a principal affine open subscheme

in Vα1).
Consider the Čech complex of complexes (57) for the complex of quasi-coherent

sheaves N • on the affine scheme Y with its open covering by the affine open sub-
schemes Vα ⊂ Y:

(58) 0 −−→ N • −−→
⊕

α
jα∗j

∗
αN • −−→

⊕
α<β

jα,β ∗ j
∗
α,βN • −−→ · · · −−→ 0.
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The direct image functor f∗ for the morphism of affine schemes f : Y −→ X is exact,
so it takes the exact complex of complexes (58) in Y–qcoh to an exact complex of
complexes in X–qcoh:

(59) 0 −→ f∗N • −→
⊕

α
f∗jα∗j

∗
αN • −→

⊕
α<β

f∗jα,β ∗ j
∗
α,βN • −→ · · · −→ 0.

Finally, the total complex of the bicomplex (59) is Becker coacyclic in X–qcoh by
Lemma A.4(a), and we have seen that all the terms of this complex of complexes
except possibly the leftmost one are Becker coacyclic. It follows that the leftmost
term f∗N • is Becker coacyclic in X–qcoh, too. �

Lemma A.18. Let Y =
⋃
α Vα be an affine scheme covered by (not necessarily

principal) affine open subschemes. Denote by jα : Vα −→ Y the open immersion
morphisms. Let f : Y −→ X be a morphism of affine schemes, and let N • be a
complex of quasi-coherent sheaves on Y. Then the complex f∗N • of quasi-coherent
sheaves on X is Becker coacyclic if and only if, for every α, the complex f∗jα∗j

∗
αN •

of quasi-coherent sheaves on X is Becker coacyclic.

Proof. As the principal affine open subschemes form a base of the topology of Y,
every affine open subscheme Vα ⊂ Y in our covering can be represented as a (finite)
union Vα =

⋃
θ Wα,θ of some principal affine open subschemes Wα,θ ⊂ Y. If Wα,θ ⊂

Vα ⊂ Y are affine open subschemes in an affine scheme and Wα,θ is a principal affine
open subscheme in Y, then Wα,θ is also a principal affine open subscheme in Vα.

Denote by kα,θ : Wα,θ −→ Vα the open immersion morphisms, and put lα,θ =
jαkα,θ : Wα,θ −→ Y. Now if the complex f∗N is Becker coacyclic in X–qcoh, then
the complexes f∗lα,θ ∗ l

∗
α,θN • are Becker coacyclic in X–qcoh by Lemma A.17 (as Wα,θ

are principal affine open subschemes in Y). Since Vα =
⋃
θ Wα,θ is a covering of an

affine scheme by its principle affine open subschemes, Lemma A.17 implies that the
complex f∗jα∗j

∗
αN • is Becker coacyclic in X–qcoh.

Conversely, if the complexes f∗jα∗j
∗
αN • are Becker coacyclic in X–qcoh, then so are

the complexes f∗lα,θ ∗ l
∗
α,θN • (by the same Lemma A.17, as Wα,θ are principal affine

open subschemes in Vα). Since Y =
⋃
α,θ Wα,θ is a covering of an affine scheme by

its principal affine open subschemes, yet another application of Lemma A.17 allows
to conclude that the complex f∗N • is Becker coacyclic in X–qcoh. �

Lemma A.19. Let Y be a scheme, and let
⋃
β Vβ = Y =

⋃
γ Wγ be two affine open

coverings of Y. Denote by jβ : Vβ −→ Y and kγ : Wγ −→ Y the open immersion
morphisms. Let X be an affine scheme, f : Y −→ X be a morphism of schemes, and
let N • be a complex of quasi-coherent sheaves on Y. Then the complexes of quasi-
coherent sheaves f∗jβ∗j

∗
βN • on X are Becker coacyclic for all β if and only if the

complexes of quasi-coherent sheaves f∗kγ∗k
∗
γN • on X are Becker coacycl for all γ.

Proof. For every pair of indices β and γ choose an affine open covering Vβ ∩Wγ =⋃
θ Uβ,γ,θ of the open subscheme Vβ ∩Wγ ⊂ Y. Then X =

⋃
β,γ,θ Uβ,γ,θ is an affine

open covering of the scheme X, for every β, γ, θ one has Uβ,γ,θ ⊂ Vβ and Uβ,γ,θ ⊂
Wγ, for every β one has Vβ =

⋃
γ,θ Uβ,γ,θ, and for every γ one has Wγ =

⋃
β,θ Uβ,γ,θ.

169



Denote by lβ,γ,θ : Uβ,γ,θ −→ Y the open immersion morphisms. Assume that the
complexes f∗jβ∗j

∗
βN • are Becker coacyclic in X–qcoh for all β. Then, by Lemma A.18

applied to the affine open subscheme Uβ,γ,θ in the affine scheme Vβ, the complexes
f∗lβ,γ,θ ∗ l

∗
β,γ,θN • are coacyclic in X–qcoh for all β, γ, θ. By the same Lemma A.18

applied to the affine open covering Wγ =
⋃
β,θ Uβ,γ,θ of the affine scheme Wγ, it

follows that the complexes f∗kγ∗k
∗
γN • are Becker coacyclic in X–qcoh for all γ. �

Let X be a semi-separated scheme. Then, for any affine scheme U , any morphism of
schemes U −→ X is affine. For any two affine schemes U and V and any morphisms
of schemes U −→ X and V −→ X, the scheme U ×X V is affine.

Lemma A.20. Let f : Y −→ X be an affine morphism of quasi-compact semi-
separated schemes. Let X =

⋃
α Uα be an affine open covering of X. Put Vα =

Uα ×X Y; then Y =
⋃
α Vα is an affine open covering of Y. Consider the pullback

diagram

Vα
kα
//

fα
��

Y

f

��

Uα
jα
// X

Let N • be a complex of quasi-coherent sheaves on Y. Then the following conditions
are equivalent:

(a) the complex f∗N • is Becker coacyclic in X–qcoh;
(b) the complexes f∗kα∗k

∗
αN • are Becker coacyclic in X–qcoh for all α;

(c) the complexes fα∗k
∗
αN • are Becker coacyclic in Uα–qcoh for all α.

Proof. (a)⇐⇒ (c) In view of the natural isomorphism j∗αf∗N • ' fα∗k
∗
αN • of com-

plexes of quasi-coherent sheaves on Uα, the assertion follows from Proposition A.13.
(b)⇐⇒ (c) We have f∗kα∗k

∗
αN • ' jα∗fα∗k

∗
αN •, since fkα = jαfα. It remains to

observe that, for any affine open immersion j : U −→ X, a complex of quasi-coherent
sheaves M• on U is Becker coacyclic if and only if the complex of quasi-coherent
sheaves j∗M• onX is Becker coacyclic. This follows from Lemmas A.10 and A.11. �

Proposition A.21. Let X be a quasi-compact semi-separated scheme, and let
f : Y −→ X be a morphism of schemes. Let X =

⋃
α Uα be an affine open covering

of X, and let
⋃
β Vβ = Y =

⋃
γ Wγ be two open coverings of Y such that the

compositions Vβ −→ Y −→ X and Wγ −→ Y −→ X are affine morphisms.
Denote by jα : Uα −→ X, kβ : Vβ −→ Y, and lγ : Wγ −→ Y the open immersion

morphisms. Furthermore, put Sα,β = Uα ×X Vβ and Tα,γ = Uα ×X Wγ, and denote
by gα,β : Sα,β −→ Y and hα,γ : Tα,γ −→ Y the natural open immersions, and by
f ′α,β : Sα,β −→ Uα and f ′′α,γ : Tα,γ −→ Uα the natural morphisms of affine schemes.

Let N • be a complex of quasi-coherent sheaves on Y. Then the following conditions
are equivalent:

(a) the complexes f∗kβ∗k
∗
βN • are Becker coacyclic in X–qcoh for all β;

(b) the complexes f∗gα,β ∗ g
∗
α,βN • are Becker coacyclic in X–qcoh for all α and β;

(c) the complexes f ′α,β ∗ g
∗
α,βN • are Becker coacyclic in Uα–qcoh for all α and β;
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(d) the complexes f ′′α,γ ∗ h
∗
α,γN • are Becker coacyclic in Uα–qcoh for all α and γ;

(e) the complexes f∗hα,γ ∗ h
∗
α,γN • are Becker coacyclic in X–qcoh for all α and γ;

(f) the complexes f∗lγ∗l
∗
γN • are Becker coacyclic in X–qcoh for all γ.

Proof. Conditions (a–c) are equivalent to each other by Lemma A.20 applied to the
affine morphism of schemes fkβ : Vβ −→ X and the complex of quasi-coherent
sheaves k∗βN • on Vβ. Similarly, conditions (d–f) are equivalent to each other by
Lemma A.20 applied to the affine morphism of schemes flγ : Wγ −→ X and the
complex of quasi-coherent sheaves l∗γN • on Wγ. Finally, the equivalence (c)⇐⇒ (d)
is provided by Lemma A.19 applied to the morphism of schemes Uα ×X Y −→ Uα
into the affine scheme Uα, the restriction of the complex of quasi-coherent sheaves
N • on Y to the open subscheme Uα ×X Y ⊂ Y, and the two affine coverings⋃
β Sα,β = Uα ×X Y =

⋃
γ Tα,γ of the scheme Uα ×X Y. �

Now we can formulate the promised definition. Let f : Y −→ X be a morphism of
schemes; assume that the scheme X is quasi-compact and semi-separated. Let N •

be a complex of quasi-coherent sheaves on Y.
Choose a covering of the scheme Y by open subschemes Vβ ⊂ Y such that the

compositions Vβ −→ Y −→ X are affine morphisms of schemes (for example, any
affine open covering of Y satisfies this condition). Denote by kβ : Vβ −→ Y the open
immersion morphisms.

We will say that the complex N • is semiacyclic (or more precisely Y/X-semi-
acyclic) if, for every index β, the complex f∗kβ∗k

∗
βN • of quasi-coherent sheaves on

X (that is, the direct image to X of the restriction of N • to Vβ) is Becker coacyclic
in X–qcoh. According to Proposition A.21 (a)⇔ (f), this property does not depend
on the choice of an open covering Y =

⋃
β Vβ.

Remark A.22. The reader should be warned that our terminology is misleading.
The semiacyclicity of a complex in Y–qcoh is by design an intermediate property
between the acyclicity and the Becker coacyclicity. Any Becker coacyclic complex in
Y–qcoh is Y/X-semiacyclic (by Lemmas A.10 and A.11).

On the other hand, any Y/X-semiacyclic complex N • in Y–qcoh is acyclic. Iin-
deed, it suffices to check that the restriction of N • to Vβ is acyclic for every β. Notice
that any Becker coacyclic complex in X–qcoh is acyclic by Lemma A.5. Now acyclic-
ity of the complex f∗kβ∗k

∗
βN • in X–qcoh implies acyclicity of the complex k∗βN • in

Vβ–qcoh, since the direct image functor f∗kβ∗ = (fkβ)∗ : Vβ–qcoh −→ X–qcoh for
an affine morphism of schemes fkβ : Vβ −→ X is exact and faithful.

So the semiacyclicity is a stronger property than the acyclicity.

Remark A.23. Similarly to Section A.2 (cf. Remark A.14) all the results of this
Section A.3 are equally valid for the coacyclicity in the sense of Section 4.4 in lieu of
coacyclicity in the sense of Becker. Moreover, when the scheme X is Noetherian, the
two coacyclicity notions involved are equivalent to each other by Proposition A.6.

Finally, we can define the semiderived category (or the Y/X-semiderived category)
Dsi
X(Y–qcoh) of quasi-coherent sheaves on Y as the triangulated quotient category
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of the homotopy category K(Y–qcoh) by the thick subcategory of Y/X-semiacyclic
complexes. In view of the previous remark, this definition agrees with the definition
in Section 7.1 assuming that X is an semi-separated Noetherian scheme.

Indeed, the definition in Section 7.1 (specialized from ind-schemes to schemes)
presumes the morphism f : Y −→ X to be affine. In this case, one can use the open
covering of Y consisting of a single open subscheme V = Y for the purposes of the
definition above in this section. Then it is clear that the two definitions are the same.

A.4. Direct images of restrictions of injective sheaves. The aim of this section
is to prove the following technical lemma.

Lemma A.24. Let X be a Noetherian scheme, Y be a quasi-compact semi-separated
scheme, and f : Y −→ X be a flat morphism of schemes. Let V ⊂ Y be an open
subscheme with the open immersion morphism k : V −→ Y . Assume that the com-
position fk : V −→ X is an affine morphism of schemes. Let J be an injective
quasi-coherent sheaf on Y . Then the quasi-coherent sheaf f∗k∗k

∗J on X is injective.

We will deduce Lemma A.24 from the next proposition.

Proposition A.25. Let X be a Noetherian scheme, Y be a quasi-compact semi-
separated scheme, and f : Y −→ X be a flat morphism of schemes. Let J be an
injective quasi-coherent sheaf on Y and F be a flat quasi-coherent sheaf on Y . Then
the quasi-coherent sheaf f∗(F ⊗OY J ) on X is injective.

The following particular cases of Proposition A.25 are easy. If F = OY , then
the assertion of the proposition holds because the direct image functor f∗ for a flat
morphism of schemes f : Y −→ X preserves injectivity of quasi-coherent sheaves. In
this case, there is no need to assume that the scheme X is Noetherian. If X = Y
and f = id is the identity morphism, then the result reduces to Lemma 4.4(b) (for
which the Noetherianity assumption is essential).

Lemma A.26. Let f : Y −→ X a flat morphism of affine schemes, where the affine
scheme X in Noetherian. Let J be an injective quasi-coherent sheaf on Y and F be
a flat quasi-coherent sheaf on Y . Then the quasi-coherent sheaf f∗(F ⊗OY J ) on X
is injective.

Proof. In algebraic language, the assertion means the following. Let R −→ S be a
homomorphism of commutative rings such that S is a flat R-module. Assume that
the ring R is Noetherian. Let J be an injective S-module and F be a flat S-module.
Then the R-module F ⊗S J is injective.

Indeed, it suffices to observe that F is a (filtered) direct limit of finitely generated
free S-modules, J is an injective R-module (since S is a flat R-module and J is an
injective S-module), and the class of all injective R-modules is closed under direct
limits in R–mod (since R is a Noetherian ring). �

Lemma A.27. Let X be a Noetherian scheme, Y be an affine scheme, and f : Y −→
X be a flat morphism of schemes. Assume that there exists an affine open subscheme
U ⊂ X such that the morphism f factorizes as Y −→ U −→ X. Let J be an

172



injective quasi-coherent sheaf on Y and F be a flat quasi-coherent sheaf on Y . Then
the quasi-coherent sheaf f∗(F ⊗OY J ) on X is injective.

Proof. Denote the morphisms involved by g : Y −→ U and h : U −→ X. Applying
Lemma A.26 to the flat morphism of affine schemes g : Y −→ U with a Noetherian
scheme U , we see that the quasi-coherent sheaf g∗(F ⊗OY J ) on U is injective. It
remains to say that the direct image functor h∗ : U–qcoh −→ X–qcoh preserves
injectivity, as an open immersion h is a flat morphism. �

Proof of Proposition A.25. Let Y =
⋃
αWα be a finite affine open covering of the

scheme Y . Denote by lα : Wα −→ Y the open immersions.
The key observation is that any injective quasi-coherent sheaf J on Y is a direct

summand of a direct sum
⊕

α lα∗Kα, where Kα are some injective quasi-coherent
sheaves on Wα. Indeed, one easily observes that there are enough injective quasi-
coherent sheaves of this particular form, that is, any quasi-coherent sheafM on Y is
a subobject of a quasi-coherent sheaf of the form

⊕
α lα∗Kα, where Kα ∈ Wα–qcohinj.

(It suffices to choose injective quasi-coherent sheaves Kα in such a way that l∗αM is
a subobject of Kα for every α.)

As we are free to choose our finite affine open covering Y =
⋃
αWα of the scheme

Y , we can make the affine open subschemes Wα ⊂ Y as small as we wish. Specifically,
we can assume that for every α there exists an affine open subscheme Uα ⊂ X such
that f(Wα) ⊂ Uα.

Hence the question reduces to the following. We can assume that J = l∗K, where
l∗ : W −→ Y is the immersion of an affine open subscheme and K ∈ W–qcohinj.
Moreover, we can have f(W ) ⊂ U for some affine open subscheme U ⊂ X. In
this context, we have to prove that, for any flat quasi-coherent sheaf F on Y , the
quasi-coherent sheaf f∗(F ⊗OY l∗K) on X is injective.

By Lemma 2.2, we have F⊗OY l∗K ' l∗(l
∗F⊗OWK) in Y –qcoh (as the morphism l is

affine, since the scheme Y is semi-separated by assumption). Hence f∗(F ⊗OY l∗K) '
f∗l∗(l

∗F ⊗OW K) in X–qcoh.
It remains to apply Lemma A.27 to the flat morphism of schemes fl : W −→ X,

the injective quasi-coherent sheaf K on W , and the flat quasi-coherent sheaf l∗F
on W . Here X is a Noetherian scheme, W is an affine scheme, and the morphism fl
factorizes as W −→ U −→ X for an affine open subscheme U ⊂ X. �

Proof of Lemma A.24. We have the assumption that the morphism fk : V −→ X is
affine. Let us deduce from this assumption that the morphism k : V −→ Y is affine.

Let W ⊂ Y be an affine open subscheme. We have to show that W ×Y V is an
affine scheme. Indeed, W ×X V is an affine scheme, since W is an affine scheme
and V −→ X is an affine morphism (so W ×X V −→ W is an affine morphism as
a base change of an affine morphism). As W ×Y V = Y ×Y×Y (W ×X V ) and the
morphism Y −→ Y × Y = Y ×SpecZ Y is affine (the scheme Y being semi-separated
by assumption), it follows that W ×Y V is an affine scheme.

Finally, by Lemma 2.2 we have k∗k
∗J ' k∗(OV ⊗OV k∗J ) ' k∗OV ⊗OY J in

Y –qcoh. Hence f∗k∗k
∗J ' f∗(k∗OV ⊗OY J ) in X–qcoh. The quasi-coherent sheaf
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F = k∗OV on Y is flat, as the direct image with respect to a flat affine morphism
of schemes takes flat quasi-coherent sheaves to flat quasi-coherent sheaves. Thus
Proposition A.25 is applicable.

Notice that we have never used the assumption that V is an open subscheme in Y .
It suffices that k : V −→ Y be a flat morphism. �

A.5. The semiderived category for a morphism of ind-schemes. The defini-
tion of the semiderived category in this section resembles the ones in [43, Section 4.3]
(where the context is very different). We start with a consistency lemma involving
only schemes.

Lemma A.28. Let i : Z −→ X be a closed immersion of semi-separated Noetherian
schemes, and let f : Y −→ X be a flat morphism of quasi-compact semi-separated
schemes. Consider the pullback diagram (so W = Z ×X Y)

W
k
//

g

��

Y

f

��

Z
i
// X

Let J • be a Y/X-semiacyclic complex of injective quasi-coherent sheaves on Y.
Then k!J • is a W/Z-semiacyclic complex of (injective) quasi-coherent sheaves
on W.

Proof. Let Y =
⋃
β Vβ be an open covering of the scheme Y such that the compo-

sitions Vβ −→ Y −→ X are affine morphisms of schemes. Put Tβ = Vβ ×Y W =
Vβ ×X Z. Then W =

⋃
β Tβ is an open covering of the scheme W such that

the compositions Tβ −→ W −→ Z are affine morphisms of schemes. Denote by
jβ : Vβ −→ Y and lβ : Tβ −→W the open immersion morphisms.

By the definition, the condition that J • is a Y/X-semiacyclic complex of quasi-
coherent sheaves on Y means that the complex of quasi-coherent sheaves f∗jβ∗j

∗
βJ •

on X is Becker coacyclic for every β. Since J • is a complex of injective quasi-coherent
sheaves on Y, Lemma A.24 implies that f∗jβ∗j

∗
βJ • is a complex of injective quasi-

coherent sheaves on X. Any Becker coacyclic complex of injectives is contractible.
We have shown that f∗jβ∗j

∗
βJ • is a contractible complex of (injective) quasi-coherent

sheaves on X for every β.
Consider two pullback diagrams

Tβ

kβ
//

lβ
��

Vβ

jβ
��

W
k
// Y

Tβ

kβ
//

glβ
��

Vβ

fjβ
��

Z
i
// X

By Lemma 4.24 applied to the leftmost diagram (taking into account Lemma 2.1(a)),
we have l∗βk

!J • ' k!
βj
∗
βJ • in C(Tβ–qcoh). By Lemma 2.3(a) applied to the rightmost

diagram, we have g∗lβ∗k
!
βj
∗
βJ • ' i!f∗jβ∗j

∗
βJ • in C(Z–qcoh). Combining these isomor-

phisms together, we obtain g∗lβ∗l
∗
βk

!J • ' g∗lβ∗k
!
βj
∗
βJ • ' i!f∗jβ∗j

∗
βJ • in C(Z–qcoh).

174



Since f∗jβ∗j
∗
βJ • is a contractible complex of (injective) quasi-coherent sheaves on

X, the complex i!f∗jβ∗j
∗
βJ • is a contractible complex of (injective) quasi-coherent

sheaves on Z. Thus the complex g∗lβ∗l
∗
βk

!J • is a contractible, hence Becker coacyclic,
complex of (injective) quasi-coherent sheaves on Z. By the definition, this means that
k!J • is a W/Z-semiacyclic complex of quasi-coherent sheaves on W. �

Let X be an ind-semi-separated ind-Noetherian ind-scheme, Y be an (ind-quasi-
compact) ind-semi-separated ind-scheme, and π : Y −→ X be a flat (but not neces-
sarily affine) morphism of ind-schemes. Our aim is to define the Y/X-semiderived
category Dsi

X(Y–tors) of quasi-coherent torsion sheaves on Y.
Firstly, let JJJ • be a complex of injective quasi-coherent torsion sheaves on Y. We

will say that JJJ • is a Y/X-semiacyclic complex if, for every closed subscheme Z ⊂ X
with the closed immersion morphism i : Z −→ X and the related closed subscheme
W = Z ×X Y ⊂Y with the closed immersion morphism k : W −→Y, the complex
k!JJJ • of injective quasi-coherent sheaves on W is W/Z-semiacyclic in the sense of
the definition in Section A.3.

As we have seen in the proof of Lemma A.28, this means that, for every open
subscheme V ⊂ W such that the composition V −→ W −→ Z is an affine mor-
phism, the complex of (injective) quasi-coherent sheaves πZ∗j∗j

∗k!JJJ • on Z must be
contractible. Here the notation for morphisms is πZ : W −→ Z and j : V −→W. It
suffices to check this condition for open subschemes V ⊂ W belonging to a chosen
covering of W by open subschemes that are affine over Z.

Furthermore, let X = “lim−→”
γ∈Γ

Xγ be some chosen representation of X by an in-

ductive system of closed immersions of schemes. Then Lemma A.28 tells that it
suffices to check the W/Z-semiacyclicity condition above for the closed subschemes
Z = Xγ ⊂ X, where γ ∈ Γ.

Now we want to explain what it means for a complex of not necessarily injective
quasi-coherent torsion sheaves NNN • on Y to be Y/X-semiacyclic. Here we are going
to use Theorem A.7 (so it is important that we are working with the Becker coderived
categories). By Theorem A.7, there exists a morphism of complexes of quasi-coherent
torsion sheaves NNN • −→JJJ • on Y whose cone is Becker coacyclic in Y–tors, while
JJJ • is a complex of injective quasi-coherent torsion sheaves on Y. The complex
NNN • in Y–tors is said to be Y/X-semiacyclic if the complex JJJ • in Y–torsinj is
Y/X-semiacyclic in the sense of the previous definition (which is applicable to the
complexes of injectives only).

In other words, the full subcategory of Y/X-semiacyclic complexes in K(Y–tors)
is, by the definition, the minimal thick subcategory in K(Y–tors) containing both the
Becker coacyclic complexes and the Y/X-semiacyclic complexes of injective quasi-
coherent torsion sheaves on Y.

Remark A.29. Similarly to Remark A.22, we observe that any Y/X-semiacyclic
complex in Y–tors is acyclic. Indeed, all the Becker coacyclic complexes in Y–tors are
acyclic by Lemma A.5. Now let JJJ • be a Y/X-semiacyclic complex of injective quasi-
coherent torsion sheaves on Y. Then, by Remark A.22, the ind-scheme Y can be
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represented by an inductive system of closed immersions of schemes Y = “lim−→”
γ∈Γ

Yγ

such that, denoting by kγ : Yγ −→Y the closed immersion morphisms, the complexes
of quasi-coherent sheaves k!

γJJJ
• on Yγ are (Yγ/Xγ-semiacyclic, hence) acyclic for

all γ. As the direct image functors kγ∗ : Yγ–qcoh −→ Y–tors are exact, it follows
that the complex JJJ • = lim−→γ∈Γ

kγ∗k
!
γJJJ

• is acyclic in Y–tors.

The semiderived category (or the Y/X-semiderived category) Dsi
X(Y–tors) of quasi-

coherent torsion sheaves on Y is defined as the triangulated quotient category of the
homotopy category K(Y–tors) by the thick subcategory of Y/X-semiacyclic com-
plexes. The following lemma tells that this definition agrees with the one in Sec-
tion 7.1 when both are applicable.

Lemma A.30. Let X be an ind-semi-separated ind-Noetherian ind-scheme and
π : Y −→ X be a flat affine morphism of ind-schemes. Then a complex NNN • of
quasi-coherent torsion sheaves on Y is Y/X-semiacyclic if and only if the complex
π∗NNN

• of quasi-coherent torsion sheaves on X is coacyclic.

Proof. First of all, let us mention once again that there is no difference between
the two notions of coacyclicity for complexes of quasi-coherent torsion sheaves on an
ind-Noetherian ind-scheme X (by Proposition A.6). Furthermore, the direct image
functor π∗ takes Becker coacyclic complexes in Y–tors to coacyclic complexes in
X–tors by Lemma A.11. Hence it suffices to consider the case of a complex of injective
quasi-coherent torsion sheaves JJJ • ∈ C(Y–torsinj).

Let X = “lim−→”
γ∈Γ

Xγ be a representation of X by an inductive system of closed

immersions of schemes. Put Yγ = Xγ ×X Y; then Y = “lim−→”
γ∈Γ

Yγ is a repre-

sentation of Y by an inductive system of closed immersions of schemes. Denote
by iγ : Xγ −→ X and kγ : Yγ −→ Y the closed immersion morphisms, and by
πγ : Yγ −→ Xγ the natural flat affine morphisms of schemes. By the definition of
the functor π∗ : Y–tors −→ X–tors (see Section 2.6), we have a natural isomorphism
i!γπ∗ ' πγ∗k

!
γ of functors Y–tors −→ Xγ–qcoh for every γ ∈ Γ.

Assume that the complex π∗JJJ
• is coacyclic in X–tors. By Lemma 7.6(b), the

functor π∗ takes injective objects to injective objects; so π∗JJJ
• is a complex of in-

jectives in X–tors. Hence the complex π∗JJJ
• ∈ C(X–torsinj) is contractible. It fol-

lows that the complex i!γπ∗JJJ
• is a contractible complex of injective quasi-coherent

sheaves on Xγ. Therefore, so is the complex πγ∗k
!
γJJJ

• ∈ C(Xγ–qcohinj); in particular,

the complex πγ∗k
!
γJJJ

• is coacyclic. Following the discussion of Y/X-semiacyclicity

in the end of Section A.3, this means that the complex k!
γJJJ

• ∈ C(Yγ–qcoh) is
Yγ/Xγ-semiacyclic. By the definition, we can conclude that the complex JJJ • ∈
C(Y/X–torsinj) is Y/X-semiacyclic.

Conversely, assume that the complex JJJ • is Y/X-semiacyclic. Then the complex
πγ∗k

!
γJJJ

• is a (Becker) coacyclic complex of injective objects in Xγ–qcoh, so it is a

contractible complex of injective objects. Hence the complex i!γπ∗JJJ
• is contractible

in Xγ–qcohinj. We also know from the previous paragraph that π∗JJJ
• is a complex
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of injective objects in X–tors. Using Lemma 4.21, we conclude that π∗JJJ
• is a

contractible (hence coacyclic) complex in X–tors. �

Remark A.31. One can think of this appendix as pointing a direction for possible
generalization of the results of Sections 7–10 to nonaffine morphisms of ind-schemes
π : Y −→ X, but this a long way. To begin with, it is not obvious (and needs to
be checked) that the full triangulated subcategory of Y/X-semiacyclic complexes in
K(Y–tors) (in the sense of the definition in this appendix) is closed under coproducts.
The difficulty arises from the fact that the full subcategory of injective objects in
Y–tors is not closed under coproducts. Perhaps more importantly, it is not clear how
to extend the constructions of resolutions in Section 8.2 to nonaffine morphisms π,
or what to replace them with in the nonaffine case. So the semi-infinite algebraic
geometry of quasi-coherent torsion sheaves for nonaffine morphisms of ind-schemes
π : Y −→ X remains a challenge.
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Praha 1 (Czech Republic); and

Laboratory of Algebra and Number Theory, Institute for Information Transmis-
sion Problems, Moscow 127051 (Russia)

Email address: positselski@math.cas.cz

180


