
Dear Kirsten, Dear Ido,

Answering the two questions in Kirsten’s letter: no, I don’t know how to construct
(a model of) the DG-algebra C•(GF ,Z/l) for the absolute Galois group GF of a field
F in terms of the elements of F and the operations of addition and multiplication
on them. Of course, the DG-algebra C•(G,Z/l) is by definition the free associative
algebra generated by the quotient space Z/l(G)/(Z/l) of the Z/l-vector space of lo-
cally constant Z/l-valued functions on G by its one-dimensional subspace of constant
functions (with the differential defined in terms of the convolution comultiplication
on Z/l(G), but this is a construction based on the data of the Galois group G = GF

rather than just the field with its elements.

Concerning the Massey products—let me try to explain what kind of Massey prod-
ucts appear in direct connection with the Koszul property, and how they are related
to the more familiar elementary constructions you appear to be working with. The
most relevant reference is [May66] (see also the heavier [May69]).

The connection with Koszulity was first pointed out by Priddy [Pr70, Section 8],
who was discussing the homogeneous case; it becomes a bit more complicated in the
nonhomogeneous augmented-adically-filtered setting relevant to the Galois theory.
(I either never learned or forgot by now whatever happened to May’s later work on the
algebraic Eilenberg–Moore spectral sequence to which Priddy refers as “to appear”.)

Let C• = (C∗, d : Ci → Ci+1) be a DG-algebra over a field k; assume for simplicity
that Ci = 0 for i < 0 and C0 = k (so in particular d0 : C0 −→ C1 is a zero map). The
simplest construction of a Massey product starts with three elements x, y, x ∈ H1(C•)
for which xy = 0 = yz in H2(C•) and proceeds to produce an element 〈x, y, z〉 ∈
H2(C•) defined up to elements of the subspace xH1(C•) +H1(C•)z ⊂ H2(C•).

Suppose that we want to extend this construction to elements of the tensor product
H1(C•) ⊗k H

1(C•) ⊗k H
1(C•). With any three vectors x, y, z ∈ H1(C•) one can

associate the decomposable tensor x⊗y⊗z ∈ H1(C•)⊗3; however, not every tensor is
decomposable. Let K2 ⊂ H1(C•)⊗k H

1(C•) denote the kernel of the multiplication
map m2 : H1(C•) ⊗k H

1(C•) −→ H2(C•). We would like to have our triple Massey
product defined on the subspace K2 ⊗k H

1(C•) ∩H1(C•)⊗k K
2 ⊂ H1(C•)⊗3.

Let Bn ⊂ Zn ⊂ Cn denote the subspaces of coboundaries and cocycles, so that
Hn = Hn(C•) = Zn/Bn; and let m : C∗ ⊗k C

∗ −→ C∗ be the multiplication
map. We denote the induced (conventional) multiplication on the cohomology by
m2 : H∗(C•)⊗k H

∗(C•) −→ H∗(C•).

Given a tensor θ ∈ K2⊗H1∩H1⊗K2 ⊂ H1⊗H1⊗H1, one lifts it to a tensor θ̃ in
Z1⊗Z1⊗Z1, applies the maps of multiplication of the first two and the last two tensor

factors m(12) = m⊗ id and m(23) = id⊗m to obtain the element (m(12)(θ̃),m(23)(θ̃))
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in B2⊗Z1⊕Z1⊗B2, lifts the latter arbitrarily to an element in C1⊗Z1⊕Z1⊗C1,
and finally applies the product map m again and adds the two summands to obtain
an element in C2, which turns out to be an element of Z2. Its image in H2(C•),
denoted by m3(θ), is the triple Massey product of our tensor θ.

What is the subspace in H2(C•) up to which the element m3(θ) is well-defined?
Let Wl ⊂ H1 be the minimal vector subspace for which θ ∈ Wl ⊗ H1 ⊗ H1, and
let Wr be the similar minimal subspace for which θ ∈ H1 ⊗H1 ⊗Wr (hence in fact
θ ∈ Wl ⊗H1 ⊗Wr). If one is careful, one can make the Massey product m3(θ) well-
defined up to elements of WlH

1 + H1Wr ⊂ H2(C•). However, generally speaking,
for “most” tensors θ ∈ K2 ⊗ H1 ∩ H1 ⊗ K2 (and certainly for “most” tensors in
H1⊗H1⊗H1) one would expect Wl = H1 = Wr. So the triple Massey product that
we have constructed is most simply viewed as a linear map

m3 : K2 ⊗k H
1(C•) ∩H1(C•)⊗k K

2 −−→ H2(C•)/m2(H
1(C•)⊗kH

1(C•)),

K2 = ker(m2 : H1(C•)⊗H1(C•)→ H2(C•)).

How is this triple Massey product construction related to the one starting from
three cohomology classes x, y, z ∈ H1(C•) with zero pairwise products and assigning
to them the cohomology class 〈x, y, z〉 in H2(C•) modulo xH1(C•) + H1(C•)z? On
the one hand, a subspace K2 ⊂ H1⊗H1 may well contain no nonzero decomposable
tensors at all, while containing many nontrivial indecomposable tensors. Then there
may be also many nontrivial indecomposable tensors in K1 ⊗H1 ∩H1 ⊗K2. So the
domain of definition of the map m3 may be essentially much wider than that of the
Massey product of triples of elements 〈x, y, z〉. On the other hand, the latter, more
elementary construction may produce its outputs with better precision (modulo a
smaller subspace inH2(C•)). Thus the mapm3 carries both more and less information
about the DG-algebra C• than the operation 〈x, y, z〉.

What is the tensor version of the quadruple Massey product, the map m4? Let
K3 ⊂ K2 ⊗ H1 ∩ H1 ⊗ K2 ⊂ H1(C•)⊗3 denote the kernel of the above map m3.
Consider the intersection of two vector subspaces K3 ⊗ H1 ∩ H1 ⊗K3 inside H1 ⊗
H1 ⊗H1 ⊗H1. Then the desired map is

m4 : K3 ⊗H1(C•) ∩H1(C•)⊗K3 −−→ (H2(C•)/ imm2)/ imm3.

Generally, the maps mn are nothing but the differentials in a natural spectral
sequence associated with the DG-algebra C•. To construct it, set C•

+ = C•/k =
C•/C0 and consider the bar-complex

C•
+ ←−− C•

+ ⊗k C
•
+ ←−− C•

+ ⊗k C
•
+ ⊗k C

•
+ ←−− · · ·

Set Dq
p = (C∗+

⊗p)q, where the grading q on the tensor powers C∗+
⊗p is induced by

the grading on C∗. The differential d : Dq
p −→ Dq+1

p is induced by the differential
on the complex C•, while the bar-differential ∂ : Dq

p −→ Dq
p−1 is defined in terms of
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the multiplication in C•. As with every bicomplex, there are two spectral sequences
associated with it; we are interested in the one that computes the cohomology of the
differental d first, and the cohomology of the bar-differential ∂ afterwards.

One has to be a bit careful, because the bicomplex Dq
p does not satisfy the usual

finiteness/boundedness conditions. So there are actually two ways to define its total
complex: one can take either infinite direct sums or infinite products along the diag-
onals. The two spectral sequences associated with such a bicomplex converge to two
different limits (namely, the cohomology of the two total complexes Tot⊕(D•

•) and
Totu(D•

•)). The spectral sequence we are interested in comes from the filtration by
the index p, which is increasing; so it converges to the cohomology of the inductive
limit of the filtration components, i. e., the direct sum total complex.

In short, we set Fp Tot⊕(D•
•)n =

⊕i6p
i−j=n(C∗+

⊗i)j. Then the spectral sequence of
this filtered complex has the form

E1
p,−q = (H∗(C•

+)⊗p)q =⇒ TorC
•

p−q(k, k), ∂rp,−q : Er
p,−q −→ Er

p−r,−(q−r+1),

where the grading q on the tensor powers H∗(C•
+)⊗p is induced by the grading on

H∗(C•). The differential ∂1 is induced by the conventional multiplication m2 on the
cohomology algebra H∗(C•), so it acts, in particular, as

m2 = ∂12,−(i+j) : H i(C•)⊗Hj(C•) −−→ H i+j(C•).

The above triple Massey product map m3 is the differential ∂23,−3 : E2
3,−3 −→ E2

1,−2,
which can be viewed as a partially defined multivalued linear map

m3 = ∂23,−3 : H1(C•)⊗H1(C•)⊗H1(C•) 999K H2(C•);

and the quadruple Massey product map m4 is the differential ∂24,−4 : E2
4,−4 −→ E2

1,−2,

m4 = ∂34,−4 : H1(C•)⊗H1(C•)⊗H1(C•)⊗H1(C•) 999K H2(C•)

(there may be plus/minus sign issues, which I disregard here).

Now let us consider the case when the cohomology algebra H1(C•) is generated by
H1 (as an associative algebra with the conventional multiplication m2). Then, the
map m2 : H1(C•)⊗H1(C•) −→ H2(C•) being surjective, the above Massey product
maps m3, m4, . . . vanish automatically (as their target spaces are zero). So do the
similar Massey products

mp = ∂p−1p,−(j1+···+jp)
: Hj1(C•)⊗ · · · ⊗Hjp(C•) 999K Hj1+···+jp−p+2(C•)

in the higher cohomology.
Does it mean that all the differentials ∂rp,−q in our spectral sequence vanish for

r > 2? Not necessarily. The first possibly nontrivial example would be

∂24,−4 : H1(C•)⊗H1(C•)⊗H1(C•)⊗H1(C•) 999K H1(C•)⊗H2(C•)⊕H2(C•)⊗H1(C•).
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This is the map whose source space is actually the kernel of the differential
∂14,−4 : H1(C•)⊗4 −→ H1(C•)⊗3, that is, the subspace

K2 ⊗H1 ⊗H1 ∩H1 ⊗K2 ⊗H1 ∩H1 ⊗H1 ⊗K2 ⊂ H1(C•)⊗4

and whose target space is the cokernel of the differential ∂13,−3 : H1 ⊗ H1 ⊗ H1 −→
H2 ⊗H1 ⊕H1 ⊗H2, or, better to say, the middle cohomology space of the sequence

H1 ⊗H1 ⊗H1 −−→ H2 ⊗H1 ⊕ H1 ⊗H2 −−→ H3.

The latter cohomology space is otherwise known as the space of relations of degree 3
in the graded algebra H∗.

What does the map ∂24,−4 do? Its source space can be otherwise described as the
intersection

(K2 ⊗H1 ∩H1 ⊗K2)⊗H1 ∩ H1 ⊗ (K2 ⊗H1 ∩H1 ⊗K2).

The map (m3 ⊗ id, id⊗m3) acts from this subspace to the quotient space of H2 ⊗
H1 ⊕ H1 ⊗ H2 by the image of the map (m2 ⊗ id, id⊗m3) coming from the direct
sum of two copies of H1⊗H1⊗H1. It is claimed that the map (m3⊗ id, id⊗m3) can
be naturally lifted to the quotient space of H2⊗H1⊕H1⊗H2 by the image of only
one (diagonal) copy of H1 ⊗H1 ⊗H1, as one can see from the explicit constructon
of m3.

Indeed, let us restrict ourselves to decomposable tensors now (for simplicity). Let x,
y, z, w be four elements in H1(C•) for which xy = yz = zw = 0 in H2(C•). Let x̃, ỹ, z̃,
w̃ ∈ Z1 ⊂ C1 be some liftings of the elements x, y, z, w, and let ξ, η, and ζ be elements
in C1 for which x̃ỹ = dξ, ỹz̃ = dη, and z̃w̃ = dζ in B2 ⊂ C2. Then the triple Massey
products are 〈x, y, z〉 = (ξz + xη mod B2) and 〈y, z, w〉 = (ηw + yζ mod B2) ∈ H2.
When one replaces ξ, η, and ζ with ξ′ = ξ + r, η′ = η + s, and ζ ′ = ζ + t, where
r, s, t ∈ Z1 ⊂ C1, one obtains 〈x, y, z〉′ = ξ′z + xη′ = 〈x, y, z〉 + rz + xs and
〈y, z, w〉′ = η′w + yζ ′ = 〈y, z, w〉+ sw + yt mod B2. Finally, one has

(〈x, y, z〉′⊗w, x⊗〈y, z, w〉′) = (〈x, y, z〉⊗w, x⊗〈y, z, q〉)+((rz+xs)⊗w, x⊗(sw+yt))

and

((rz + xs)⊗ w, x⊗ (sw + yt)) = ∂13,−3(r ⊗ z ⊗ w + x⊗ s⊗ w + x⊗ y ⊗ t)
in H2 ⊗H1 ⊕H1 ⊗H2, because zw = 0 = xy in H2(C•) by assumption.

What if the cohomology algebra H∗(C•) is not only generated by H1, but also de-
fined by quadratic relations? There still can be nontrivial Massey operations (mean-
ing the differentials ∂rp,−q with r > 2), starting from

∂25,−5 : H1(C•)⊗5 999K H2 ⊗H1 ⊗H1 ⊕ H1 ⊗H2 ⊗H1 ⊕ H1 ⊗H1 ⊗H2.
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This is actually well-defined as a linear map from the source space⋂4
i=1H

1(C•)⊗i−1 ⊗K2 ⊗H1(C•)⊗4−i ⊂ H1(C•)⊗5

to a target space isomorphic to TorH
∗

3,4 (k, k). The latter Tor space is the first obstruc-
tion to Koszulity of a quadratic graded algebra H∗.

Why call these complicated polylinear maps “Massey products”? Well, they are
actually invariants of the quasi-isomorphism class of the (augmented) DG-algebra C•.
Indeed, a morphism of DG-algebras f : ′C• −→ ′′C• would induce a morphism of
the bar-bicomplexes ′D•

• −→ ′′D•
•, hence also a homomorphism of spectral sequences

′Er
p,−q −→ ′′Er

p,−q. When the morphism f is a cohomology isomorphism, it induces an

isomorphism ′E1
p,−q ' ′′E1

p,−q on the pages E1 of these spectral sequences, hence also
an isomorphism of all the subsequent pages Er

p,−q with r > 2. This means that the
differentials ′∂rp,−q and ′′∂rp,−q must coincide. For a formal DG-algebra C•, one has
∂rp,−q = 0 for all r > 2 and p, q ∈ Z.

There still remains an unexplained notation TorC
•

n (k, k) for the limit term of the
spectral sequence Er

p,−q in the above exposition. This is the derived functor of tensor
product of DG-modules over C• defined on the (conventional) derived category of
DG-modules (obtained by inverting the conventional quasi-isomorphisms, i. e., the
DG-module morphisms inducing isomorphisms on the cohomology). Specializing to
the case when C• = C•(N) is the cochain complex of a conilpotent coaugmented
coalgebra over k (such as the coalgebra Z/l(G) of locally constant Z/l-valued func-
tions on a pro-l-group G, with the convolution comultiplication over Z/l), one has

TorC
•

0 (k, k) = N and TorC
•

n (k, k) = 0 for n 6= 0.
For any augmented DG-algebra C•, the term E1

p,−q is simply the bar-complex of

the cohomology algebra H∗(C•) (and the differential ∂1p,−q is the bar differential for

the algebra H∗). Hence the term E2 is easily computed as

E2
p,−q = TorH

∗

p (k, k)q,

where the grading p is the usual indexing of the Tor spaces and the grading q is
induced by the grading of H∗. The spectral sequence Er

p,−q converges to

E∞p,−q = grFp TorC
•

p−q(k, k)

in the sense of the inductive limit with respect to the increasing filtration F .
A positively graded algebra H∗ is said to be Koszul if TorH∗p (k, k)q = 0 for all

p 6= q. So if when the algebra H∗ is Koszul, one has ∂rp,−q = 0 for r > 2 simply
“for dimension reasons”: no pairs of integers (p, q) exist for which both the source
and the target space of ∂rp,−q would be nonvanishing. Due to the convergence of the

spectral sequence, one then also has TorC
•

n (k, k) = 0 for n 6= 0. This is what is called
“the K(π, 1) property” of C•.
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Conversely, if TorC
•

n (k, k) = 0 for n 6= 0 and ∂rp,−q = 0 for r > 2, then it follows from

the spectral sequence that E2
p,−q = E∞p,−q = 0 for p− q 6= 0, so the algebra H∗(C•) is

Koszul. This proves the main assertion promised in [Pos11, Subsection 9.11].

I hope this sheds some light on the question of the connections between vanishing
Massey products and Koszul property that was raised in our conversation with Ido
and the previous exchange of letters with Kirsten. The more elementary (or more
delicate) notion of Massey products that has been studied in your papers is certainly
also interesting generally, and in application to absolute Galois cohomology in par-
ticular. But absolute Galois groups seem to have very special properties, and in
particular very special homological properties, in many respects: you look on them
from one angle, and see them very special in one way, then look from another angle,
and they are very special in another, seemingly unrelated, way.

I tried to formulate some of such conjectural (or, on rare occasions, provable)
properties in the papers [Pos05, Pos06]. They still do not form any clear picture: the
simplest illustration is, any closed subgroupH of an absolute Galois groupG is also an
absolute Galois group, but there is no way one could deduce quadraticity or Koszulity
of H∗(H,Z/l) from the same condition on H∗(G,Z/l). So further and perhaps much
stronger special properties of absolute Galois groups, uniting the presently known
fragments into a coherent picture, are yet to be found.

With best wishes,

Leonid
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